Effect of extractives and thermal modification on antibacterial properties of Scots pine and Norway spruce

2013 ◽  
Vol 4 (4) ◽  
pp. 248-252 ◽  
Author(s):  
T Vainio-Kaila ◽  
L Rautkari ◽  
K Nordström ◽  
M Närhi ◽  
O Natri ◽  
...  
BioResources ◽  
2010 ◽  
Vol 6 (1) ◽  
pp. 356-372 ◽  
Author(s):  
Olov Karlsson ◽  
Ekaterina Sidorova ◽  
Tom Morén

Studies on the durability and dimensional stability of a series of hardwoods and softwoods after thermal modification in vegetable oils and in steam atmospheres have been performed. Mass loss after exposure to Coniophora puteana (BAM Ebw.15) for 16 weeks was very low for European birch, European aspen, Norway spruce, and Scots pine thermally modified in a linseed oil product with preservative (for 1 hour at 200 oC). Fairly low mass losses were obtained for wood thermally modified in linseed-, tung- and rapeseed oil, and losses were related to the wood species. Low mass loss during rot test was also found for Norway spruce and Scots pine modified in saturated steam at 180 oC. Water absorption of pine and aspen was reduced by the thermal treatments and the extent of reduction was dependent on wood species and thermal modification method. Thermally modified aspen was stable during cycling climate tests, whereas pine showed considerable cracking when modified under superheated steam conditions (Thermo D). At lower modification temperature (180 oC) an increase in mass after modification in rapeseed oil of spruce, aspen and sapwood as well as heartwood of pine was observed, whereas at high temperature (240 oC) a mass loss could be found. Oil absorption in room tempered oil after thermal modification in oil was high for the more permeable aspen and pine (sapwood).


Forests ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1165
Author(s):  
Petteri Torniainen ◽  
Carmen-Mihaela Popescu ◽  
Dennis Jones ◽  
Alexander Scharf ◽  
Dick Sandberg

The thermal modification of wood has become the most-commonly commercialised wood modification process globally, with the ThermoWood® process currently being the most dominant. As with all commercial processes, there is a need to have a robust quality control system, with several small–scale studies undertaken to date investigating quality control using a range of analytical methods, culminating in a multi-year assessment of colour as a means of quality control. This study, as an extension to this multi-year assessment, further explores the colour of Norway spruce and Scots pine commercially modified by the ThermoWood® S and D processes, respectively, along with the mechanical properties and structural characterisation by Fourier transform infrared (FT–IR) spectroscopy and principal component analysis (PCA) to ascertain further correlations between colour and other measurable properties. Infrared spectroscopy indicated modifications in the amorphous carbohydrates and lignin, whereas the use of PCA allowed for the differentiation between untreated and modified wood. Colour measurements indicated reduced brightness, and shifting toward red and yellow colours after thermal modification, hardness values decreased, whereas MOE and MOR values were similar for modified wood compared to unmodified ones. However, by combining the colour measurements and PC scores, it was possible to differentiate between the two modification processes (Thermo–S and Thermo–D). By combining the mechanical properties and PC scores, it was possible to differentiate the untreated wood from the modified ones, whereas by combining the mechanical properties and colour parameters, it was possible to differentiate between the three groups of studied samples. This demonstrates there is a degree of correlation between the test methods, adding further confidence to the postulation of using colour to ensure quality control of ThermoWood®.


2019 ◽  
Vol 49 (11) ◽  
pp. 1434-1440 ◽  
Author(s):  
Chenyang Cai ◽  
Henrik Heräjärvi ◽  
Antti Haapala

The behaviour of industrially modified wood has not been systematically evaluated in controlled exposure conditions. The objective of this study was to assess the equilibrium moisture content (EMC), dimensions, and Brinell hardness of thermally modified wood in different conditions of temperature and relative humidity (RH). Tested materials consisted of European ash (Fraxinus excelsior L.), Norway spruce (Picea abies (L.) Karst.), and Scots pine (Pinus sylvestris L.) that were thermally modified according to ThermoWood industrial processes into the classes Thermo-S and Thermo-D. The properties were measured at the following conditions: 20 °C and 65% RH, 10 °C and 90% RH, and 30 °C and 30% RH. The results show that the reduction of EMC and the improvement in dimensional stability are dependent on the degree of thermal modification. Thermal modification was more resistant to moisture absorption at 20 °C and 65% RH than at 10 °C and 90% RH and 30 °C and 30% RH, and the more severe modification decreased the difference among different exposure conditions. The tangential–radial ratio of swelling and shrinkage was higher for thermally modified wood than for nonmodified wood. Brinell hardness of modified Scots pine and Norway spruce did not differ significantly from that of nonmodified wood in normal and dry conditions, but the more humid conditions increased the difference by 12%–17%.


Forests ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 943
Author(s):  
Katri Nissinen ◽  
Virpi Virjamo ◽  
Antti Kilpeläinen ◽  
Veli-Pekka Ikonen ◽  
Laura Pikkarainen ◽  
...  

We studied the growth responses of boreal Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies L. Karst.) and silver birch (Betula pendula Roth) seedlings to simulated climate warming of an average of 1.3 °C over the growing season in a controlled field experiment in central Finland. We had six replicate plots for elevated and ambient temperature for each tree species. The warming treatment lasted for the conifers for three growing seasons and for the birch two growing seasons. We measured the height and diameter growth of all the seedlings weekly during the growing season. The shoot and root biomass and their ratios were measured annually in one-third of seedlings harvested from each plot in autumn. After two growing seasons, the height, diameter and shoot biomass were 45%, 19% and 41% larger in silver birch seedlings under the warming treatment, but the root biomass was clearly less affected. After three growing seasons, the height, diameter, shoot and root biomass were under a warming treatment 39, 47, 189 and 113% greater in Scots pine, but the root:shoot ratio 29% lower, respectively. The corresponding responses of Norway spruce to warming were clearly smaller (e.g., shoot biomass 46% higher under a warming treatment). As a comparison, the relative response of height growth in silver birch was after two growing seasons equal to that measured in Scots pine after three growing seasons. Based on our findings, especially silver birch seedlings, but also Scots pine seedlings benefitted from warming, which should be taken into account in forest regeneration in the future.


2012 ◽  
Vol 32 (6) ◽  
pp. 724-736 ◽  
Author(s):  
J. Pumpanen ◽  
J. Heinonsalo ◽  
T. Rasilo ◽  
J. Villemot ◽  
H. Ilvesniemi

Sign in / Sign up

Export Citation Format

Share Document