Constitutive equations for high temperature flow stress of aluminium alloys

1997 ◽  
Vol 13 (3) ◽  
pp. 210-216 ◽  
Author(s):  
H. Shi ◽  
A. J. McLaren ◽  
C. M. Sellars ◽  
R. Shahani ◽  
R. Bolingbroke
2012 ◽  
Vol 233 ◽  
pp. 339-342 ◽  
Author(s):  
Ming Ping Zou ◽  
Wu Jiao Xu ◽  
Peng Cheng Wang

To investigate the hot deformation behaviors of AISI 4120 steel, isothermal compression tests were conducted using Gleeble-1500 thermal-mechanical simulator in the temperature range of 1073-1373K with the strain rate of 0.01-10s-1. The hyperbolic sine law in Arrhenius type is used in the constitutive modeling for AISI 4120. The influence of strain is incorporated in constitutive analysis by considering the effect of strain on material constants α, n, Q and ln A. The flow stress values predicted by the developed constitutive equations show a good agreement with experimental results, which reveals that the developed constitutive equations could give an accurate and precise prediction for the high temperature flow behaviors of AISI 4120 steel. The predictability of developed constitutive equation was further quantified in terms of correlation coefficient (R) and average absolute relative error (AARE). The R and AARE were found to be 0.9847 and 8.0372% respectively, which reflects the good prediction capabilities of the developed constitutive equation.


Metals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 42 ◽  
Author(s):  
Bingwang Lei ◽  
Gaoqiang Chen ◽  
Kehong Liu ◽  
Xin Wang ◽  
Xiaomei Jiang ◽  
...  

High-temperature plastic flow is the underlying process that governs the product quality in many advanced metal manufacturing technologies, such as extrusion, rolling, and welding. Data and models on the high-temperature flow behavior are generally desired in the design of these manufacturing processes. In this paper, quantitative constitutive analysis is carried out on 3Cr-1Si-1Ni ultra-high strength steel, which sheds light on the mathematic relation between the flow stress and the thermal-mechanical state variables, such as temperature, plastic strain, and strain rate. Particularly, the hyperbolic-sine equation in combination with the Zener-Hollomon parameter is shown to be successful in representing the effect of temperature and strain rate on the flow stress of the 3Cr-1Si-1Ni steel. It is found that the flow stress of the 3Cr-1Si-1Ni steel is significantly influenced by strain. The strain-dependence on flow stress is not identical at different temperatures and strain rates. In the constitutive model, the influence of strain in the constitutive analysis is successfully implemented by introducing strain-dependent constants for the constitutive equations. Fifth-order polynomial equations are employed to fit the strain-dependence of the constitutive constant. The proposed constitutive equations which considers the compensation of strain is found to accurately predict flow stress of the 3Cr-1Si-1Ni steel at the temperatures ranging from 800 °C to 1250 °C, strain rate ranging from 0.01/s to 10/s, and strain ranging from 0.05 to 0.6.


Author(s):  
Athar Safari ◽  
Muhammad Imran ◽  
Sabine Weiss

AbstractMolybdenum alloys are commonly used as tool material for high-temperature deformation processes like forming or forging. For these types of application, the material has to withstand static load at elevated temperatures. To investigate the high-temperature performance of the material, uniaxial hot tensile tests were performed on a Mo-1.2% Hf-0.1% C alloy (MHC) over the temperature range of 1173-1473 K with intervals of 100 K and strain rates of 0.001, 0.01 and 0.1 s−1 up to the fracture of the specimen. The flow stress decreases with increase in temperature and the reduction in strain rate. This behaviour could be related to the increasing rate of restoration mechanisms, i.e. dynamic recrystallization or recovery as well as to the decrease in the strain hardening rate. Microstructure of the two most critical hot deformation conditions were shown and compared. Based on modified Johnson–Cook and strain-compensated Arrhenius-type models, constitutive equations were established to predict the high-temperature flow stress of the respective MHC alloy. The accuracy of both models was evaluated by comparing the predicted stress values and the values obtained from experiments. Correlation coefficient, average absolute relative error, the number of material constants involved and the computational time required for evaluating the constants were calculated to quantify and compare the precision of both models. The flow stress values predicted by the constitutive equations are in good agreement with the experimental results. At lower strain rates (0.001 and 0.01 s−1), distinct deviation from the experimental results can be observed for the modified Johnson–Cook model. Despite the longer evaluation time and the larger number of material constants, the deformation behaviour, tracked by the Arrhenius-type model is more accurate throughout the entire deformation process.


2013 ◽  
Vol 50 ◽  
pp. 198-206 ◽  
Author(s):  
Xiaona Peng ◽  
Hongzhen Guo ◽  
Zhifeng Shi ◽  
Chun Qin ◽  
Zhanglong Zhao

Author(s):  
Ya Liu ◽  
Jing Li ◽  
Yuanfeng Song ◽  
Tao Li ◽  
Xuping Su ◽  
...  

AbstractIn order to find material parameters of established Zener-Hollomon constitutive equations and predict high-temperature flow stress of alloy 2618-Ti, the hot compressive deformation behaviors of the alloy were investigated at temperatures ranging from 300 to 500 °C at intervals of 50 °C and at constant strain rates of 0.001, 0.01, 0.1 and 1 s


2009 ◽  
Vol 500 (1-2) ◽  
pp. 114-121 ◽  
Author(s):  
Sumantra Mandal ◽  
V. Rakesh ◽  
P.V. Sivaprasad ◽  
S. Venugopal ◽  
K.V. Kasiviswanathan

Author(s):  
W. M. Sherman ◽  
K. M. Vedula

The strength to weight ratio and oxidation resistance of NiAl make this ordered intermetallic, with some modifications, an attractive candidate to compete with many superalloys for high temperature applications. Recent studies have shown that the inherent brittleness of many polycrystalline intermetallics can be overcome by micro and macroalloying. It has also been found that the high temperature mechanical properties of NiAl can be enhanced through the addition of Nb by powder metallurgical techniques forming a dispersed second phase through interdiffusion in a polycrystalline matrix. A drop in the flow stress is observed however in a NiAl-2 at.% Nb alloy after 0.2 % strain during constant strain rate hot compression testing at 1025°C. The object of this investigation was to identify the second phase and to determine the cause of the flow stress drop.


Sign in / Sign up

Export Citation Format

Share Document