Precipitate coarsening during hot-compression testing of NiAl + 2 at.% Nb

Author(s):  
W. M. Sherman ◽  
K. M. Vedula

The strength to weight ratio and oxidation resistance of NiAl make this ordered intermetallic, with some modifications, an attractive candidate to compete with many superalloys for high temperature applications. Recent studies have shown that the inherent brittleness of many polycrystalline intermetallics can be overcome by micro and macroalloying. It has also been found that the high temperature mechanical properties of NiAl can be enhanced through the addition of Nb by powder metallurgical techniques forming a dispersed second phase through interdiffusion in a polycrystalline matrix. A drop in the flow stress is observed however in a NiAl-2 at.% Nb alloy after 0.2 % strain during constant strain rate hot compression testing at 1025°C. The object of this investigation was to identify the second phase and to determine the cause of the flow stress drop.

Author(s):  
H.-J. Kleebe ◽  
J.S. Vetrano ◽  
J. Bruley ◽  
M. Rühle

It is expected that silicon nitride based ceramics will be used as high-temperature structural components. Though much progress has been made in both processing techniques and microstructural control, the mechanical properties required have not yet been achieved. It is thought that the high-temperature mechanical properties of Si3N4 are limited largely by the secondary glassy phases present at triple points. These are due to various oxide additives used to promote liquid-phase sintering. Therefore, many attempts have been performed to crystallize these second phase glassy pockets in order to improve high temperature properties. In addition to the glassy or crystallized second phases at triple points a thin amorphous film exists at two-grain junctions. This thin film is found even in silicon nitride formed by hot isostatic pressing (HIPing) without additives. It has been proposed by Clarke that an amorphous film can exist at two-grain junctions with an equilibrium thickness.


2014 ◽  
Vol 1058 ◽  
pp. 165-169 ◽  
Author(s):  
Shi Ming Hao ◽  
Jing Pei Xie

The hot deformation behaviors of 30%SiCp/2024 aluminum alloy composites was studied by hot compression tests using Gleeble-1500 thermomechanical simulator at temperatures ranging from 350-500°C under strain rates of 0.01-10 s-1. The true stress-true strain curves were obtained in the tests. Constitutive equation and processing map were established. The results show that the flow stress decreases with the increase of deformation temperature at a constant strain rate, and increases with the increase of strain rate at constant temperature, indicating that composite is a positive strain rate sensitive material. The flow stress behavior of composite during hot compression deformation can be represented by a Zener-Hollomon parameter in the hyperbolic sine form. Its activation energy for hot deformation Q is 183.251 kJ/mol. The optimum hot working conditions for this material are suggested.


2019 ◽  
Vol 796 ◽  
pp. 167-175 ◽  
Author(s):  
Jianning Gan ◽  
Qianming Gong ◽  
Yanqi Jiang ◽  
Hao Chen ◽  
Yilun Huang ◽  
...  

Author(s):  
J. A. Horton ◽  
A. DasGupta ◽  
C. T. Liu

Ordered intermetallic alloys potentially have good high temperature mechanical properties which often are obtained by macroalloying. Since service temperatures may be near the critical ordering temperature, Tc, it is important to understand the disordering processes. The disordering mechanism in an alloy of 52.5 at. % Ni—22.5 Fe—14.5 V—10 Al—0.5 Ti [which can be expressed as (Ni70Fe30)3(V58Al40Ti2)], will be presented here. The aluminum was added to increase Tc from 750 to 975°C and stabilize the Ll2 structure.All specimens were first fully ordered by a heat treatment consisting of 30 min at 1000°C, 1 d at 700°C and 2 d at 600°C which results in a “swirl” pattern of antiphase boundaries (APB) similar to Fig. 1. Specimens were then heat-treated for 24 h at temperatures from 600 to 950°C in 50°C increments and water quenched.


1988 ◽  
Vol 133 ◽  
Author(s):  
M. H. Yoo ◽  
C. L. Fu ◽  
J. K. Lee

ABSTRACTMechanistic understanding of deformation twinning in ordered superlattice structures is reviewed, and the inter-relationships between twinning and generalized plastic flow or fracture toughness are discussed. While general discussions refer to all the fcc-based and bcc-based cubic and noncubic ordered intermetallic alloys, specific calculations of the energetic and kinetic aspects of deformation twinning are made for TiAl. The importance of the twin-slip conjugate relationship on high temperature mechanical properties is emphasized. Discussion is given of possible effects of macro- and micro-alloying on twinning propensity.


1986 ◽  
Vol 81 ◽  
Author(s):  
R. S. Diehm ◽  
D. E. Mikkola

AbstractHot compression testing has been used to examine the effects of Mo and Ti additions on the yield strength and rate of work hardening for cast alloys near Fe3Al. A few powder processed materials have also been studied. Significant improvements in high temperature compressive properties on alloying have been related to increases in the DO3→B2 transition temperature and the associated changes in the nature of the dislocations involved in the deformation processes.


2013 ◽  
Vol 833 ◽  
pp. 271-275
Author(s):  
Shi Ming Hao ◽  
Jing Pei Xie

The hot deformation behaviors of 30%SiCp/2024 aluminum alloy composites was studied by hot compression tests using Gleeble-1500 thermomechanical simulator at temperatures ranging from 350-500 °C under strain rates of 0.01-10 s-1. The true stress-true strain curves were obtained in the tests. Constitutive equation and processing map were established. The results show that the flow stress decreases with the increase of deformation temperature at a constant strain rate, and increases with the increase of strain rate at constant temperature, indicating that composite is a positive strain rate sensitive material. The flow stress behavior of composite during hot compression deformation can be represented by a Zener-Hollomon parameter in the hyperbolic sine form. Its activation energy for hot deformation Q is 153.251 kJ/mol. The optimum hot working conditions for this material are suggested.


Author(s):  
Shibo Wen ◽  
Chaoyu Han ◽  
Bao Zhang ◽  
Yongfeng Liang ◽  
Feng Ye ◽  
...  

The flow behavior of Fe-6.5wt.%Si alloys during hot compression was investigated at temperatures 650–950 °C and strain rates 0.01–10 s-1. The results showed that the flow stress depended distinctly on the deformation temperatures and strain rates. The flow stress and work hardening rate increased with the decrease of temperature and the increase of strain rate. The activation energy under all the deformation conditions was calculated to be 410 kJ/mol. The constitutive equation with hyperbolic sine function and Zener–Hollomon parameter was developed. The peak stress, critical stress, and steady-state stress could be represented as σ=A+Bln(Z/A). Dynamic recrystallization occurred under the deformation conditions where the values of Z were lower than 1020. Processing maps were established to optimize the processing parameters. The power dissipation efficiency decreased in the high temperature and low strain rate region, increased in the high temperature and high strain rate region, and remained unchanged in other regions with the increase of true strain. Furthermore, the unstable area expanded. The true strain of 0.7 was the optimum reduction according to the processing map. Based on the analysis of surface quality, microstructures, and ordered structures, the optimized processing parameters for the Fe-6.5wt.%Si alloys were the temperature and strain rate of higher than 900 °C and 0.01–10 s-1, respectively, or 800–900 °C and lower than 0.4 s-1, respectively.


2004 ◽  
Vol 19 (5) ◽  
pp. 1432-1438 ◽  
Author(s):  
Takafumi Kusunose ◽  
Rak-Joo Sung ◽  
Tohru Sekino ◽  
Shuji Sakaguchi ◽  
Koichi Niihara

Hexagonal graphitic BN (h-BN) is interesting as a second phase for high-temperature structural ceramics because it has the same crystal structure as graphite, for which fracture strength and Young’s modulus increase with increased temperature. In this study, high-temperature mechanical properties of Si3N4/BN nanocomposite were evaluated to clarify the effect of fine h-BN particles at elevated temperatures. As a result, we found that high-temperature strength and hardness of the nanocomposite were maintained up to high temperatures; also, its Young’s modulus increased gradually, concomitant with elevated temperatures up to 1400 °C. Finally, these properties were compared with those of monolithic Si3N4 and Si3N4/BN microcomposite.


Sign in / Sign up

Export Citation Format

Share Document