Surface free energy of a soil clay fraction in relation to aggregate stability

Clay Minerals ◽  
1993 ◽  
Vol 28 (1) ◽  
pp. 145-148
Author(s):  
B. Jańczuk ◽  
G. Józefaciuk ◽  
M. Hajnos ◽  
T. Bialopiotrowicz ◽  
A. Kliszcz

When studying surface free energies of clays in relation to clay composition, we calculated that in some instances the aggregate stability should be higher for Na- then for Ca-forms. This raised the question as to whether the results obtained with the surface free energy approach are reliable for estimation of soil aggregate stability. The aim of the present work was to measure the surface free energy components and attractive forces for a clay calculated from measurements of the contact angle of glycerol, diiodomethane and cis-decalin and to compare them with results of penetrometrical measurements.

1992 ◽  
Vol 31 (3) ◽  
pp. 235-241 ◽  
Author(s):  
Bronisław Jańczuk ◽  
Wiesław Wójcik ◽  
Anna Zdziennicka ◽  
Fernando González-Caballero

1990 ◽  
Vol 26 (3-4) ◽  
pp. 375-394 ◽  
Author(s):  
B. Jańczuk ◽  
E. Chibowski ◽  
T. Białopiotrowicz ◽  
M. Hajnos ◽  
J. Stawiński

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2716
Author(s):  
Aneta Liber-Kneć ◽  
Sylwia Łagan

The key goal of this study was to characterize surface properties of chosen dental materials on the base on the contact angle measurements and surface free energy calculations. Tested materials were incubated in the simulated oral environment and drinks to estimate an influence of conditions similar to those in the oral cavity on wetting and energetic state of the surface. Types of materials were as follows: denture acrylic resins, composite and PET-G dental retainer to compare basic materials used in a prosthetics, restorative dentistry and orthodontics. The sessile drop method was used to measure the contact angle with the use of several liquids. Values of the surface free energies were estimated based on the Owens–Wendt, van Oss–Chaudhury–Good and Zisman’s methods. The research showed that surface wetting depends on the material composition and storage conditions. The most significance changes of CA were observed for acrylic resins (84.7° ± 3.8° to 65.5° ± 3.5°) and composites (58.8° ± 4.1° to 49.1° ± 5.7°) stored in orange juice, and for retainers (81.9° ± 1.8° to 99.6° ± 4.5°) incubated in the saline solution. An analysis of the critical surface energy showed that acrylic materials are in the zone of good adhesion (values above 40 mJ/m2), while BIS-GMA composites are in the zone of poor adhesion (values below 30 mJ/m2). Study of the surface energy of different dental materials may contribute to the development of the thermodynamic model of bacterial adhesion, based on the surface free energies, and accelerate the investigation of biomaterial interaction in the biological environment.


1989 ◽  
Vol 54 (12) ◽  
pp. 3171-3186 ◽  
Author(s):  
Jan Kloubek

The validity of the Fowkes theory for the interaction of dispersion forces at interfaces was inspected for the system water-aliphatic hydrocarbons with 5 to 16 C atoms. The obtained results lead to the conclusion that the hydrocarbon molecules cannot lie in a parallel position or be randomly arranged on the surface but that orientation of molecules increases there the ration of CH3 to CH2 groups with respect to that in the bulk. This ratio is changed at the interface with water so that the surface free energy of the hydrocarbon, γH, rises to a higher value, γ’H, which is effective in the interaction with water molecules. Not only the orientation of molecules depends on the adjoining phase and on the temperature but also the density of hydrocarbons on the surface of the liquid phase changes. It is lower than in the bulk and at the interface with water. Moreover, the volume occupied by the CH3 group increases on the surface more than that of the CH2 group. The dispersion component of the surface free energy of water, γdW = 19.09 mJ/m2, the non-dispersion component, γnW = 53.66 mJ/m2, and the surface free energies of the CH2 and CH3 groups, γ(CH2) = 32.94 mJ/m2 and γ(CH3) = 15.87 mJ/m2, were determined at 20 °C. The dependence of these values on the temperature in the range 15-40 °C was also evaluated.


Author(s):  
Surachet Aramrak ◽  
Natthapol Chittamart ◽  
Worachart Wisawapipat ◽  
Wutthida Rattanapichai ◽  
Mutchima Phun-Iam ◽  
...  

2021 ◽  
Vol 13 (3) ◽  
pp. 1541
Author(s):  
Xiaolin Shen ◽  
Lili Wang ◽  
Qichen Yang ◽  
Weiming Xiu ◽  
Gang Li ◽  
...  

Our study aimed to provide a scientific basis for an appropriate tillage management of wheat-maize rotation system, which is beneficial to the sustainable development of agriculture in the fluvo-aquic soil areas in China. Four tillage treatments were investigated after maize harvest, including rotary tillage with straw returning (RT), deep ploughing with straw returning (DP), subsoiling with straw returning (SS), and no tillage with straw mulching (NT). We evaluated soil organic carbon (SOC), dissolved organic carbon (DOC), permanganate oxidizable carbon (POXC), microbial biomass carbon (MBC), and particulate organic carbon (POC) in bulk soil and soil aggregates with five particle sizes (>5 mm, 5–2 mm, 2–1 mm, 1–0.25 mm, and <0.25 mm) under different tillage managements. Results showed that compared with RT treatment, NT treatment not only increased soil aggregate stability, but also enhanced SOC, DOC, and POC contents, especially those in large size macroaggregates. DP treatment also showed positive effects on soil aggregate stability and labile carbon fractions (DOC and POXC). Consequently, we suggest that no tillage or deep ploughing, rather than rotary tillage, could be better tillage management considering carbon storage. Meanwhile, we implied that mass fractal dimension (Dm) and POXC could be effective indicators of soil quality, as affected by tillage managements.


Sign in / Sign up

Export Citation Format

Share Document