Textural and Isotopic Variations in Diagenetic Kaolinite from the Magnus Oilfield Sandstones

Clay Minerals ◽  
1993 ◽  
Vol 28 (4) ◽  
pp. 625-639 ◽  
Author(s):  
C. I. Macaulay ◽  
A. E. Fallick ◽  
R. S. Haszeldine

AbstractIn Upper Jurassic sandstones of the Magnus Sandstone Member from the Magnus Oilfield in the North Sea, diagenetic kaolinite morphology and isotopic composition vary away from the Late Cimmerian unconformity. Near the unconformity, coarse-grained (15-30 μm) vermiform kaolinite morphology is most common, whereas downdip, 3 km away, fine-grained (∼10 μm) blocky morphology is prevalent. Kaolinite abundances increase downdip, away from the unconformity, and kaolinite near the unconformity has low δ18O (12·5-14·9%o smow) compared to that downdip (15·9−17·5%o). This reflects replacement of marine depositional pore-waters by meteoric water near the erosion surface. However, isotopic temperature estimates suggest that the majority of kaolinite formed at elevated burial temperatures of ~80°C, and not during subaerial exposure of the sandstone. The δD of kaolinite close to the unconformity is also lower than that downdip. Kaolinite morphology and isotopic composition record meteoric water ingress during Late Cimmerian subaerial erosion and retention of meteoric-derived water in the crest of the Magnus structure during burial diagenesis. Kaolinite formation during subaerial exposure is not of significance to the sandstone reservoir quality.

Clay Minerals ◽  
2006 ◽  
Vol 41 (1) ◽  
pp. 151-186 ◽  
Author(s):  
M. Wilkinson ◽  
R. S. Haszeldine ◽  
A. E. Fallick

AbstractThe principal clays of the northern and central North Sea are illite (sometimes with interlayered smectite) and kaolin. Chlorite is only locally important. Although it has been proposed that kaolin within North Sea sandstones is detrital in origin, the majority of workers have concluded that it is authigenic, largely the product of feldspar alteration. Kaolin is found within a wide range of sedimentary settings (and within shales) apparently defying the notion that kaolin is an indicator of meteoric water deposition. Within sandstones, the earliest authigenic kaolin has a vermiform morphology, the distribution of which is controlled by the availability of detrital mica to act as a nucleus, and the composition of the post-depositional porewaters. This vermiform kaolin formed in meteoric water, the presence of which is easily accounted for below sub-aerial exposure surfaces in non-marine formations, and below unconformities over marine units. In fully marine sands, and even marine shale units, kaolin still occurs. It has therefore been suggested that even these locations have been flushed with meteoric water.Early vermiform kaolin recrystallizes to a more blocky morphology as burial proceeds, at least in the Brent Group. Blocky kaolin has been reported as growing before, synchronously with, and after the formation of quartz overgrowths, though oxygen isotope studies support low-temperature growth, pre-quartz. Blocky kaolin may form during meteoric flushing associated with lower Cretaceous uplift and erosion, though it is found in fault blocks that are thought to have remained below sea level. Here, the kaolin may form in stagnant meteoric water, relics of the post-depositional porewater. It has also been proposed that the blocky kaolin grew in ascending basinal waters charged with carboxylic acids and CO2, though this hypothesis is not supported by stable oxygen isotope data. Some of the blocky kaolin is dickite, the stable polymorph above ∼100°C.Fibrous illite occurs almost ubiquitously within the clastic sediments of the North Sea. An early pore-lining phase has been interpreted as both infiltrated clastic clay, and as an early diagenetic phase. Early clays may have been quite smectite-rich illites, or even discrete smectites. Later, fibrous illite is undoubtedly neoformed, and can degrade reservoir quality significantly. Both within sandstones and shales, there is an apparent increase in the K content deeper than 4 km of burial, which could be due to dilution of the early smectite-rich phase by new growth illite, or to the progressive illitization of existing I-S. Much of the ‘illite’ that has been dated by the K-Ar method may therefore actually be I-S.The factors that control the formation of fibrous illite are only poorly known, though temperature must play a role. Illite growth has been proposed for almost the entire range of diagenetic temperatures (e.g. 15–20°C, Brent Group; 35–40°C, Oxfordian Sand, Inner Moray Firth; 50–90°C, Brae formation; 100–110°C, Brent Group; 130–140°C, Haltenbanken). It seems unlikely that there is a threshold temperature below which illite growth is impossible (or too slow to be significant), though this is a recurring hypothesis in the literature. Instead, illite growth seems to be an event, commonly triggered by oil emplacement or another change in the physiochemical conditions within the sandstone, such as an episode of overpressure release. Hence fibrous illite can grow at any temperature encountered during diagenesis.Although there is an extensive dataset of K-Ar ages of authigenic illites from the Jurassic of the North Sea, there is no consensus as to whether the data are meaningful, or whether the purified illite samples prepared for analysis are so contaminated with detrital phases as to render the age data meaningless. At present it is unclear about how to resolve this problem, though there is some indication that chemical micro-analysis could help. It is a common belief that illite ages record the timing of oil charge, and so can be used to calibrate basin models.Grain-coating Fe-rich chlorite cements can preserve exceptional porosity during burial. They are found in marginal marine sandstones, formed during diagenesis from precursor Fe-rich clays such as berthierine or verdine.


Clay Minerals ◽  
1999 ◽  
Vol 34 (2) ◽  
pp. 333-344 ◽  
Author(s):  
B. A. Sakharov ◽  
H. Lindgreen ◽  
A. L. Salyn ◽  
V. A. Drits

AbstractThe finest fractions of Upper Jurassic shales from the North Sea and onshore Denmark contain 80–90% of an illite-smectite-vermiculite (I-S-V) mixed-layer mineral and, in addition a phase which has X-ray diffraction (XRD) peaks at 7.20–7.26 Å and 3.56–3.58 Å in air- dried and glycolated specimens. This phase may be a fine kaolinite with a small thickness of coherent scattering domains (CSDs) or alternatively a mixed-layer mineral which has kaolinite as the dominant component. For one sample from the Norwegian well 9/4-3, these alternatives are investigated using the multi-specimen method by which agreement between the experimental pattern and the pattern calculated for one and the same structure is obtained for each of several specimens saturated with different cations and with/without glycolation. It is demonstrated that the modelled XRD patterns for a kaolinite-illite-vermiculite (K-I-V) structure having 0.94 kaolinite, 0.03 illite and 0.03 vermiculite layers and random alternation fit the experimental patterns.


2012 ◽  
Vol 78 (2) ◽  
pp. 341-352 ◽  
Author(s):  
Nathan D. Webb ◽  
David A. Grimley ◽  
Andrew C. Phillips ◽  
Bruce W. Fouke

AbstractThe origin of Illinois Episode (OIS 6) glacial ridges (formerly: ‘Ridged Drift’) in the Kaskaskia Basin of southwestern Illinois is controversial despite a century of research. Two studied ridges, containing mostly fluvial sand (OSL ages: ~ 150 ± 19 ka), with associated debris flows and high-angle reverse faults, are interpreted as ice-walled channels. A third studied ridge, containing mostly fine-grained till, is arcuate and morainal. The spatial arrangement of various ridge types can be explained by a glacial sublobe in the Kaskaskia Basin, with mainly fine-grained ridges along the sublobe margins and coarse-grained glaciofluvial ridges in a paleodrainage network within the sublobe interior. Illinois Episode till fabric and striation data demonstrate southwesterly ice flow that may diverge near the sublobe terminus. The sublobe likely formed as glacial ice thinned and receded from its maximum extent. The Kaskaskia Basin contains some of the best-preserved Illinois Episode constructional glacial landforms in the North American midcontinent. Such distinctive features probably result from ice flow and sedimentation into this former lowland, in addition to minimal postglacial erosion. Other similar OIS 6 glacial landforms may exist in association with previously unrecognized sublobes in the midcontinent, where paleo-lowlands might also have focused glacial sedimentation.


Author(s):  
Elena V. Vatrushkina ◽  
◽  
Marianna I. Tuchkova ◽  

Upper Jurassic-Lower Cretaceous deposits were formed on the South-Western margin of the Chukotka terrane in active tectonic environment. Their stratigraphic units characterized by sedimentary structures and lithology similarities, facies variation and scarcity of reliable fauna findings. Detailed lithological studies are necessary due to the absence of a unified approach to the stratigraphic division of deposits. The paper presents petrographic, geochemical, and isotope-geochemical characteristics of Upper Jurassic-Lower Cretaceous rocks. The stages of changing the sedimentation conditions and sources, which determined the differences in sedimentological features and the composition of the studied strata, are reconstructed. The Oxford-Kimmeridgian section is composed of sandy debris flow deposits with an arcosic composition of psammitic differences. Among their sources, ancient granitoids dominated, while siliciclastic rocks, volcanites and metamorphic complexes were secondary. Volgian-valanginian interval is characterized by the accumulation of sediments in various parts of the submarine fan. In Volgian sequences fine -, medium - and coarse-grained turbidites with lenses of small-pebble conglomerates are identified. A large number of simultaneous pyroclastic material in the Volgian deposits indicates the synchronous volcanic activity. In the Volgian period, the province was dominated by volcanites, mainly of the basaltic and andesitic composition, siliciclastic rocks were present in smaller amount. The Berriasin section is composed of fine-grained turbidites with single horizons of medium-grained turbidites and gravelitic lenses, as well as slope deposits in the form of rhythmically interbedded sandstones and mudstones with slump structures. Sandstones have greywacke composition and contain an admixture of ash material in the matrix. The main sources for Berriasian deposits were siliciclastic rocks and felsic volcanic complexes. The Valanginian section is represented by fine and medium-grained turbidites with horizons of amalgamated sandstones. Sandstones are classified as arkoses by the ratio of rock-forming components. The dominant source in the Valanginian time was ancient granitoids, while siliciclastic rocks and volcanites were secondary.


2004 ◽  
Vol 5 ◽  
pp. 99-112 ◽  
Author(s):  
Stefan Piasecki ◽  
John H. Callomon ◽  
Lars Stemmerik

The Jurassic of Store Koldewey comprises a Middle Jurassic succession towards the south and an Upper Jurassic succession towards the north. Both successions onlap crystalline basement and coarse sediments dominate. Three main lithostratigraphical units are recognised: the Pelion Formation, including the Spath Plateau Member, the Payer Dal Formation and the Bernbjerg Formation. Rich marine macrofaunas include Boreal ammonites and the successions are dated as Late Bathonian – Early Callovian and Late Oxfordian – Early Kimmeridgian on the basis of new collections combined with material in earlier collections. Fine-grained horizons and units have been analysed for dinoflagellate cysts and the stratigraphy of the diverse and well-preserved flora has been integrated with the Boreal ammonite stratigraphy. The dinoflagellate floras correlate with contemporaneous floras from Milne Land, Jameson Land and Hold with Hope farther to the south in East Greenland, and with Peary Land in North Greenland and Svalbard towards the north. The Middle Jurassic flora shows local variations in East Greenland whereas the Upper Jurassic flora gradually changes northwards in East Greenland. A Boreal flora occurs in Peary Land and Svalbard. The characteristic and stratigraphically important species Perisseiasphaeridium pannosum and Oligosphaeridium patulum have their northernmost occurrence on Store Koldewey, whereas Taeniophora iunctispina and Adnatosphaeridium sp. extend as far north as Peary Land. Assemblages of dinoflagellate cysts are used to characterise significant regional flooding events and extensive sequence stratigraphic units.


1982 ◽  
Vol 8 ◽  
pp. 32-37
Author(s):  
Finn Jacobsen

Deposition during the Triassic continued in the basinal areas developed during the Permian, but in Early Triassic the highs were also gradually covered by sediments. The pattern of sedimentation in the two mega-basins is analogous to that of the Rotliegendes, i.e. with a pronounced, more coarse-grained elastic infill in the northern basin (fig. 20). The Triassic represents a regressive period in the North Sea area, with dominant continental sedimentation of sandstone, shale, and evaporites in red bed facies. Strong subsidence is recorded in the center of the Danish Subbasin with more than 5000 m Triassic sediments, and in the Horn Graben with approximately 3000 m. In the Danish Central Graben the Triassic has not yet been mapped, but thicknesses of about 2000 m or more are expected locally.


2021 ◽  
Author(s):  
Johnathon Osmond ◽  
Mark Mulrooney ◽  
Nora Holden ◽  
Elin Skurtveit ◽  
Jan Inge Faleide ◽  
...  

The maturation of geological CCS along the Norwegian Continental Shelf is ongoing in the Norwegian North Sea, however, more storage sites are needed to reach climate mitigation goals by 2050. In order to augment the Aurora site and expand CO2 storage in the northern Horda Platform, regional traps and seals must be assessed to better understand the area’s potential. Here, we leverage wellbore and seismic data to map storage aquifers, identify structural traps, and assess possible top and fault seals associated with Lower and Upper Jurassic storage complexes in four major fault blocks. With respect to trap and seal, our results maintain that both prospective intervals represent viable CO2 storage options in various locations of each fault block. Mapping, modeling, and formation pressure analyses indicate that top seals are present across the entire study area, and are sufficiently thick over the majority of structural traps. Across-fault juxtaposition seals are abundant, but dominate the Upper Jurassic storage complexes. Lower Jurassic aquifers, however, are often upthrown against Upper Jurassic aquifers, but apparent across fault pressure differentials and moderate to high shale gouge ratio values correlate, suggesting fault rock membrane seal presence. Zones of aquifer self-juxtaposition, however, are likely areas of poor seal along faults. Overall, our results provide added support that the northern Horda Platform represents a promising location for expanding CO2 storage in the North Sea, carrying the potential to become a future injection hub for CCS in northern Europe.


Author(s):  
Kaj Ingemann Schnetler

NOTE: This monograph was published in a former series of GEUS Bulletin. Please use the original series name when citing this monograph. Schnetler, K. I. (2001). The Selandian (Paleocene) mollusc fauna from Copenhagen, Denmark: the Poul Harder 1920 collection. Geology of Denmark Survey Bulletin, 37, 1-85. https://doi.org/10.34194/dgub.v37.5021 A detailed study has been made of the molluscan fauna in the material collected by Poul Harder in 1920 from the classical Danish early Selandian (Late Paleocene) locality in the Lellinge Greensand at Sundkrogen (the harbour of Copenhagen). A description is also given of the now submerged locality.The Harder collection, which has remained virtually unstudied for more than 75 years, is discussed in the interesting historical context that it was not included in the monograph on the Paleocene of Copenhagen by J.P.J. Ravn in 1939. Ravn's study was based on material collected the same year from Sundkrogen by A. Rosenkrantz, and on material collected in the thirties from other localities in the Copenhagen area. Some material collected by A. Rosenkrantz and others, but not dealt with by J.P.J. Ravn, is also included in the present study. The long-lasting controversy about publication rights relating to the Sundkrogen material is recalled.Twenty-seven new species are introduced, viz. Portlandia (Yoldiella) nielseni n. sp., Plicatula selandica n. sp., Laternula (Laternulina) ravni n. sp., Dentalium (Dentalium) sundkrogensis n. sp., Solariella (Solariella) ravni n. sp., Solariella (Solariella) hauniensis n. sp., Teinostoma (Teinostoma) ledoni n. sp., Entomope kirstineae n. sp., Harrisianella subglabra n. sp., Bittium (Bittium) oedumi n. sp., Cerithiopsidella (Vatopsis) rasmusseni n. sp., Seila (Notoseila) heilmannclauseni n. sp., Seila (Notoseila) anderseni n. sp., Thereitis weinbrechti n. sp., Cirsotrema (Cirsotrema) hauniensis n. sp., Opalia (Pliciscala) thomseni n. sp., Charonia (Sassia) danica n. sp., Siphonalia arlejansseni n. sp., Astyris (Astyris) lappanni n. sp., Streptolathyrus danicus n. sp., Streptolathyrus lemchei n. sp., Cancellaria (sensu lato) jakobseni n. sp., Pseudocochlespira rosenkrantzi gen. et sp. n., Actaeopyramis marcusseni n. sp., Chrysallida (Parthenina) peterseni n. sp., Syrnola (Syrnola) granti n. sp. and Cingulina harderi n. sp. Within the Turridae, Pseudocochlespira n. gen. is established.A total of 182 taxons are listed. Of these, 36 are new for the Lellinge Greensand, and 60 have not previously been recorded from Sundkrogen. The study demonstrates that several genera have their first occurrence datum in the Selandian. The Selandian mollusc fauna from Sundkrogen and elsewhere in the Copenhagen area has no equivalent in the North Sea Basin, but faunas from boulders of Selandian age from the south-eastern part of Denmark and the southern part of Sweden demonstrate affinities with the Sundkrogen fauna, whereas the fauna from the Kerteminde Marl demonstrates a lesser degree of affinity.The palaeoenvironment is interpreted as a transgression of the Selandian Sea with erosion of the underlying Danian sediments. The near-shore environment was followed by gradually increasing water depth, resulting in deposits of fine-grained sand and finally dark clay. The dark clay was probably deposited in a deep inlet from the eastern margin of the Selandian Sea.


2021 ◽  
Vol 59 (5) ◽  
pp. 1049-1083
Author(s):  
Eric E. Hiatt ◽  
T. Kurtis Kyser ◽  
Paul A. Polito ◽  
Jim Marlatt ◽  
Peir Pufahl

ABSTRACT Proterozoic continental sedimentary basins contain a unique record of the evolving Earth in their sedimentology and stratigraphy and in the large-scale, redox-sensitive mineral deposits they host. The Paleoproterozoic (Stratherian) Kombolgie Basin, located on the Arnhem Land Plateau, Northern Territory, is an exceptionally well preserved, early part of the larger McArthur Basin in northern Australia. This intracratonic basin is filled with 1 to 2 km-thick, relatively undeformed, nearly flat-lying, siliciclastic rocks of the Kombolgie Subgroup. Numerous drill cores and outcrop exposures from across the basin allow sedimentary fabrics, structures, and stratigraphic relationships to be studied in great detail, providing an extensive stratigraphic framework and record of basin development and evolution. Tectonic events controlled the internal stratigraphic architecture of the basin and led to the formation of three unconformity-bounded sequences that are punctuated by volcanic events. The first sequence records the onset of basin formation and is comprised of coarse-grained sandstone and polymict lithic conglomerate deposited in proximal braided rivers that transported sediment away from basin margins and intra-basin paleohighs associated with major uranium mineralization. Paleo-currents in the upper half of this lower sequence, as well as those of overlying sequences, are directed southward and indicate that the major intra-basin topographic highs no longer existed. The middle sequence has a similar pattern of coarse-grained fluvial facies, followed by distal fluvial facies, and finally interbedded marine and eolian facies. An interval marked by mud-rich, fine-grained sandstones and mud-cracked siltstones representing tidal deposition tops this sequence. The uppermost sequence is dominated by distal fluvial and marine facies that contain halite casts, gypsum nodules, stromatolites, phosphate, and “glauconite” (a blue-green mica group mineral), indicating a marine transgression. The repeating pattern of stratigraphic sequences initiated by regional tectonic events produced well-defined coarse-grained diagenetic aquifers capped by intensely cemented distal fluvial, shoreface, eolian, and even volcanic units, and led to a well-defined heterogenous hydrostratigraphy. Basinal brines migrated within this hydrostratigraphy and, combined with paleotopography, dolerite intrusion, faulting, and intense burial diagenesis, led to the economically important uranium deposits the Kombolgie Basin hosts. Proterozoic sedimentary basins host many of Earth's largest high-grade iron and uranium deposits that formed in response to the initial oxygenation of the hydrosphere and atmosphere following the Great Oxygenation Event. Unconformity-related uranium mineralization like that found in the Kombolgie Basin highlights the interconnected role that oxygenation of the Earth, sedimentology, stratigraphy, and diagenesis played in creating these deposits.


Sign in / Sign up

Export Citation Format

Share Document