Maletoyvayamite, Au3Se4Te6, a new mineral from Maletoyvayam deposit, Kamchatka peninsula, Russia

2020 ◽  
Vol 84 (1) ◽  
pp. 117-123 ◽  
Author(s):  
Nadhezda D. Tolstykh ◽  
Marek Tuhý ◽  
Anna Vymazalová ◽  
Jakub Plášil ◽  
František Laufek ◽  
...  

AbstractMaletoyvayamite, Au3Se4Te6, is a new mineral discovered in a heavy-mineral concentrate from the Gaching occurrence of the Maletoyvayam deposit, Kamchatka, Russia (60°19′51.87″N, 164°46′25.65″E). It forms anhedral grains (10 to 50 μm in size) and is found in intergrowths with native gold (Au–Ag), Au tellurides (calaverite), unnamed phases (AuSe, Au2TeSe and Au oxide), native tellurium, sulfosalts (tennantite, tetrahedrite, goldfieldite and watanabeite) and supergene tripuhyite. Maletoyvayamite has a good cleavage on {010} and {001}. In plane-polarised light, maletoyvayamite is grey, has strong bireflectance (grey to bluish grey), and strong anisotropy; it exhibits no internal reflections. Reflectance values for maletoyvayamite in air (Rmin,Rmax in %) are: 38.9, 39.1 at 470 nm; 39.3, 39.5 at 546 nm; 39.3, 39.6 at 589 nm; and 39.4, 39.7 at 650 nm. Sixteen electron-microprobe analyses of maletoyvayamite gave an average composition: Au 34.46, Se 16.76, Te 47.23 and S 0.84, total 99.29 wt.%, corresponding to the formula Au2.90(Se3.52S0.44)Σ3.96Te6.14 based on 13 atoms; the average of eleven analyses on synthetic analogue is: Au 34.20, Se 19.68 and Te 45.42, total 99.30 wt.%, corresponding to Au2.90Se4.16Te5.94. The calculated density is 7.98 g/cm3. The mineral is triclinic, space group P1, with a = 8.901(2), b = 9.0451(14), c = 9.265(4) Å, α = 97.66(3), β = 106.70(2), γ = 101.399(14)°, V = 685.9(4) Å3 and Z = 2. The crystal structure of maletoyvayamite represents a unique structure type resembling a molecular structure. There are cube-like [Au6Se8Te12] clusters linked via van der Waals interactions. The structural identity of maletoyvayamite with the synthetic Au3Se4Te6 was confirmed by powder X-ray diffraction and Raman spectroscopy.

2018 ◽  
Vol 83 (4) ◽  
pp. 523-530 ◽  
Author(s):  
Victor V. Subbotin ◽  
Anna Vymazalová ◽  
František Laufek ◽  
Yevgeny E. Savchenko ◽  
Chris J. Stanley ◽  
...  

AbstractMitrofanovite, Pt3Te4, is a new telluride discovered in low-sulfide disseminated ore in the East Chuarvy deposit, Fedorovo–Pana intrusion, Kola Peninsula, Russia. It forms anhedral grains (up to ~20 μm × 50 μm) commonly in intergrowths with moncheite in aggregates with lukkulaisvaaraite, kotulskite, vysotskite, braggite, keithconnite, rustenburgite and Pt–Fe alloys hosted by a chalcopyrite–pentlandite–pyrrhotite matrix. Associated silicates are: orthopyroxene, augite, olivine, amphiboles and plagioclase. Mitrofanovite is brittle; it has a metallic lustre and a grey streak. Mitrofanovite has a good cleavage, along {001}. In plane-polarised light, mitrofanovite is bright white with medium to strong bireflectance, slight pleochroism, and strong anisotropy on non-basal sections with greyish brown rotation tints; it exhibits no internal reflections. Reflectance values for the synthetic analogue of mitrofanovite in air (Ro, Re’ in %) are: 58.4, 54.6 at 470 nm; 62.7, 58.0 at 546 nm; 63.4, 59.1 at 589 nm; and 63.6, 59.5 at 650 nm. Fifteen electron-microprobe analyses of mitrofanovite gave an average composition: Pt 52.08, Pd 0.19, Te 47.08 and Bi 0.91, total 100.27 wt.%, corresponding to the formula (Pt2.91Pd0.02)Σ2.93(Te4.02Bi0.05)Σ4.07 based on 7 atoms; the average of eleven analyses on synthetic analogue is: Pt 52.57 and Te 47.45, total 100.02 wt.%, corresponding to Pt2.94Te4.06. The density, calculated on the basis of the formula, is 11.18 g/cm3. The mineral is trigonal, space group R$\overline 3 $m, with a = 3.9874(1), c = 35.361(1) Å, V = 486.91(2) Å3 and Z = 3. The crystal structure was solved and refined from the powder X-ray-diffraction data of synthetic Pt3Te4. Mitrofanovite is structurally and chemically related to moncheite (PtTe2). The strongest lines in the powder X-ray diffraction pattern of synthetic mitrofanovite [d in Å (I) (hkl)] are: 11.790(23)(003), 5.891(100)(006), 2.851(26)(107), 2.137(16)(1013), 2.039(18)(0114), 1.574(24)(0120), 1.3098(21)(0027). The structural identity of natural mitrofanovite with synthetic Pt3Te4 was confirmed by electron backscatter diffraction measurements on the natural sample. The mineral name is chosen to honour Felix P. Mitrofanov, a Russian geologist who was among the first to discover platinum-group element mineralisation in the Fedorova–Pana complex.


2018 ◽  
Vol 83 (1) ◽  
pp. 89-94 ◽  
Author(s):  
Italo Campostrini ◽  
Francesco Demartin ◽  
Marco Scavini

AbstractThe new mineral russoite (IMA2015-105), NH4ClAs23+O3(H2O)0.5, was found at the Solfatara di Pozzuoli, Pozzuoli, Napoli, Italy, as a fumarolic phase associated with alacránite, dimorphite, realgar, mascagnite, salammoniac and an amorphous arsenic sulfide. It occurs as hexagonal plates up to ~300 µm in diameter and 15 µm thick, in rosette-like intergrowths. On the basis of powder X-ray diffraction measurements and chemical analysis, the mineral was recognised to be identical to the corresponding synthetic phase NH4ClAs2O3(H2O)0.5. Crystals are transparent and colourless, with vitreous lustre and white streak. Tenacity is brittle and fracture is irregular. Cleavage is perfect on {001}. The measured density is 2.89(1) g/cm3; the calculated density is 2.911 g/cm3. The empirical formula, (based on 4.5 anions per formula unit) is [(NH4)0.94,K0.06]Σ1.00(Cl0.91,Br0.01)Σ0.92As2.02O3(H2O)0.5. Russoite is hexagonal, space group P622, with a = 5.2411(7), c = 12.5948(25) Å, V = 299.62(8) Å3 and Z = 2. The eight strongest X-ray powder diffraction lines are [dobs Å(I)(hkl)]: 12.63(19)(001), 6.32(100)(002), 4.547(75)(100), 4.218(47)(003), 3.094(45)(103), 2.627(46)(110), 2.428(31)(112) and 1.820(28)(115). The structure, was refined to R = 0.0518 for 311 reflections with I > 2σ(I) and shows a different location of the ammonium cation and water molecules with respect to that reported for the synthetic analogue. The mineral belongs to a small group of phylloarsenite minerals (lucabindiite, torrecillasite and gajardoite). It contains electrically neutral As2O3 layers, topologically identical to those found in lucabindiite and gajardoite between which are ammonium cations and outside of which Cl– anions. Water molecules and additional ammonium cations are located in a layer between two levels of chloride anions.


2020 ◽  
Vol 58 (3) ◽  
pp. 395-402
Author(s):  
A. Vymazalová ◽  
F. Laufek ◽  
T.L. Grokhovskaya ◽  
C.J. Stanley

ABSTRACT Viteite, Pd5InAs, is a new mineral discovered in the Monchetundra layered intrusion, Kola Peninsula, Russia. It forms euhedral grains about 0.5 to 10 μm in size intergrown with irarsite (IrAsS), hollingworthite (RhAsS), zvyagintsevite (Pd3Pb), Au-Ag alloys, and tulameenite (Pt2CuFe), that are replaced by Pt-Pd-Fe-Cu alloys and Pt-Pd-Fe-Cu oxygenated compounds, all of which are embedded in chalcocite, goethite, and covellite. Viteite is brittle and has a metallic luster. In plane-polarized light, viteite is bright pinkish-white. The mineral is weakly anisotropic with rotation tints blue to pinkish brown; it exhibits no internal reflections. Reflectance values of viteite in air (R1, R2 in %) are 55.7, 54.0 at 470 nm; 59.2, 58.4 at 546 nm; 60.0, 60.4 at 589 nm; and 60.0, 62.6 at 650 nm. Eight electron-microprobe analyses of viteite give an average composition of Pd 71.90, Pt 1.60, Fe 0.98, Cu 0.59, In 11.48, Hg 1.42, Pb 0.40, As 10.70, total 99.07 wt.%, corresponding to the empirical formula (Pd4.92Pt0.06)Σ4.98(In0.73Fe0.12Cu0.07Hg0.05Pb0.01)Σ0.98As1.04 based on 7 atoms; the average of 12 analyses of its synthetic analogue is: Pd 73.72, In 16.37, As 9.80, total 99.90 wt.%, corresponding to Pd5.02In1.03As0.95. The density, calculated on the basis of the empirical formula, is 10.78 g/cm3. The mineral is tetragonal, space group P4/mmm, with a 3.98600(3), c 6.98385(8) Å, V 110.961(2) Å3, and Z = 1. The crystal structure of synthetic Pd5InAs was solved and refined using powder X-ray-diffraction data from synthetic Pd5InAs. Viteite crystallizes with the Pd5TlAs structure type. The strongest lines in the X-ray powder diffraction pattern of synthetic Pd5InAs [d in Å (I) (hkl)] are: 2.3281(45)(003), 2.1932(100)(112), 1.9928(33)(020), 1.2515(17)(115), 1.1857(25)(132). The mineral is named for the Vite river, which flows near the Monchetundra intrusion.


2017 ◽  
Vol 81 (1) ◽  
pp. 155-166 ◽  
Author(s):  
Hans-Peter Bojar ◽  
Franz Walter ◽  
Judith Baumgartner

AbstractThe new mineral joanneumite was found at Pabellón de Pica Mountain, Iquique Province, Tarapacá Region, Chile, where it occurs as violet microcrystalline aggregates up to 2 mm in size in small cracks in a gabbroic rock, which is covered by a guano deposit. Associated minerals are salammoniac, dittmarite, möhnite and gypsum. Joanneumite is non-fluorescent and the Mohs hardness is 1. The calculated density is 2.020 g cm–3. The infrared spectrum of joanneumite shows the frequencies of NH3 and isocyanurate groups and the absence of absorptions of H2O molecules and OH– ions. The chemical composition (electron microprobe data, the hydrogen was calculated from the structural formula, wt.%) is C 20.33, N 31.11, O 28.34, Cu 17.27, Zn 0.24, H 2.82, total 100.11. The empirical formula is Cu0.96Zn0.01N7.84C5.98O6.25H9.96 and the idealized formula is CuN8C6O6H10 with the structural formula Cu(C3N3O3H2)2(NH3)2. Due to the lack of suitable single crystals the synthetic analogue of joanneumite was prepared for the single-crystal structure refinement. The crystal structure was solved and refined to R = 0.025 based upon 1166 unique reflections with I > 2σ (I). Joanneumite is triclinic, space group P1̄, a = 4.982(1), b = 6.896(1), c = 9.115(2) Å, α = 90.53(3), β = 97.85(3), γ = 110.08(3)°, V = 290.8(1) Å3, Z = 1 obtained from single-crystal data at 100 K, which are in good agreement with cell parameters from powder diffraction data of joanneumite at 293 K: a = 5.042(1), b = 6.997(1), c = 9.099(2) Å, α = 90.05(3), β = 98.11(2), γ = 110.95(3)° and V = 296.3(1) Å3. The eight strongest lines of the powder X-ray diffraction pattern are [d, Å (I,%) (hkl)] 6.52 (68) (010), 5.15 (47) (011), 4.66 (21) (100, 110), 4.35 (9) (1̄11), 3.29 (6) (1̄20), 3.22 (7) (1̄1̄1), 3.140 (100) (1̄21), 2.074 (7) (1̄32). The crystal structure of joanneumite is identical with the structure of synthetic bis(isocyanurato) diamminecopper(II).


2021 ◽  
pp. 1-6
Author(s):  
Stuart J. Mills ◽  
Pavel M. Kartashov ◽  
Anthony R. Kampf ◽  
Mike S. Rumsey ◽  
Chi Ma ◽  
...  

Abstract Native tungsten (IMA2011-004), W, is officially described as a new mineral from gold placers in the Bol'shaya Pol'ya river valley, Prepolar Urals, Russia, associated with yttriaite-(Y) and from quartz veins in the Mt Neroyka rock-crystal field, Ust–Puiva, Tyumenskaya Oblast', Russia. Tungsten forms polycrystalline grains and masses, and rarely cubo-octahedra. It is silver white to steel grey in colour, with metallic lustre and grey streak. The calculated density is 19.226 g/cm3. The Vickers hardness (VHN25) is 571.45 kg/mm2. In plane polarised light, tungsten is white with a pale-yellow tint and optically isotropic. Electron microprobe analyses of Bol'shaya Pol'ya river valley material provided W 99.27, Mo 0.06, Mn 0.04, Fe 0.01, total 99.38 wt.%. The five strongest powder X-ray diffraction lines are [dobs Å(I)(hkl)]: 2.2422(100)(110), 1.5835(25)(200), 1.2929(48)(211), 1.0010(23)(310) and 0.8457(24)(321). Tungsten is cubic, Im $\bar{3}$ m, a = 3.1648(4) Å, V = 31.69(4) Å3 and Z = 2. Some additional occurrences of native tungsten and technogenic tungsten found in Nature are also described.


2016 ◽  
Vol 80 (5) ◽  
pp. 855-867 ◽  
Author(s):  
Igor V. Pekov ◽  
Natalia V. Zubkova ◽  
Vasiliy O. Yapaskurt ◽  
Yury S. Polekhovsky ◽  
Marina F. Vigasina ◽  
...  

AbstractThe new mineral melanarsite, K3Cu7Fe3+O4(AsO4)4, was found in the sublimates of the Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka Peninsula, Russia. It is associated with dmisokolovite, shchurovskyite, bradaczekite, hematite, tenorite, aphthitalite, johillerite, arsmirandite, As-bearing orthoclase, hatertite, pharmazincite, etc. Melanarsite occurs as tabular to prismatic crystals up to 0.4 mm, separate or combined in clusters up to 1 mm across or in interrupted crusts up to 0.02 cm × 1 cm × 1 cm covering basalt scoria. The mineral is opaque, black, with a vitreous lustre. Melanarsite is brittle. Mohs' hardness is ∼4 and the mean VHN = 203 kg mm–2. Cleavage was not observed and the fracture is uneven. Dcalc is 4.39 g cm–3. In reflected light, melanarsite is dark grey. Bireflectance is weak, anisotropism is very weak. Reflectance values [R1–R2, % (λ, nm)] are 10.5–9.4 (470), 10.0–8.9 (546), 9.7–8.7 (589), 9.5–8.6 (650). The Raman spectrum is reported. Chemical composition (wt.%, electron microprobe) is K2O 10.70, CaO 0.03, CuO 45.11, ZnO 0.24, Al2O3 0.32, Fe2O3 6.11, TiO2 0.12, P2O5 0.07, As2O5 36.86, total 99.56. The empirical formula, based on 20 O apfu, is (K2.81Ca0.01)∑2.82(Cu7.02Fe3+0.95Al0.08Zn0.04Ti0.02)∑8.11(As3.97P0.01)∑3.98O20. Melanarsite is monoclinic, C2/c, a = 11.4763(9), b = 16.620(2), c = 10.1322(8) Å, β = 105.078(9)°, V = 1866.0(3) Å3 and Z = 4. The strongest reflections of the powder X-ray diffraction pattern [d,Å(I)(hkl)] are 9.22(100)(110), 7.59(35)(1₃11), 6.084(17) (111), 4.595(26)(1₃31, 220, 2₃21), 3.124(22)(3₃31, 1₃51), 2.763(20)(400, 1₃52), 2.570(23)(043) and 2.473(16) (260, 2₃61, 350). Melanarsite has a novel structure type. Its crystal structure, solved from single-crystal X-ray diffraction data (R = 0.091), is based upon a heteropolyhedral pseudo-framework built by distorted Cu(1–3)O6 and (Fe,Cu)O6 octahedra and As(1–3)O4 tetrahedra. Two crystallographically independent K+ cations are located in the tunnels and voids of the pseudo-framework centring eight- and seven-fold polyhedra. The name reflects the mineral being an arsenate and its black colour (from the Greek μέλαν, black).


2018 ◽  
Vol 82 (2) ◽  
pp. 367-373 ◽  
Author(s):  
Sergei F. Sluzhenikin ◽  
Vladimir V. Kozlov ◽  
Chris J. Stanley ◽  
Maria L. Lukashova ◽  
Keith Dicks

ABSTRACTVymazalováite, Pd3Bi2S2 is a new platinum-group mineral discovered in the Komsomolsky mine of the Talnakh deposit, Noril'sk district, Russia. It forms small (from a few μm to 20–35 µm) inclusions or euhedral grains in intergrowths of polarite, sobolevskite, acanthite and unnamed (Pd,Ag)5BiS2 in aggregates (up to ~200 µm) in galena and rarely in chalcopyrite. It occurs with telargpalite, cooperite, braggite, vysotskite, sopcheite, stibiopalladinite, sobolevskite, moncheite, kotulskite, malyshevite, insizwaite, Au-bearing silver and the newly described mineral kravtsovite (PdAg2S) in association with pyrite, chalcopyrite and galena in vein-disseminated mineralization in skarn rocks. Synthetic vymazalováite is brittle; it has a metallic lustre and a grey streak. In plane-polarized reflected light, vymazalováite is creamy grey and appears slightly brownish against galena in the assemblage with chalcopyrite. It exhibits no internal reflections. Average reflectance values in air for natural and synthetic vymazalováite are (R natural, R synthetic in %) are: 46.35, 45.7 at 470 nm, 47.65, 47.45 at 546 nm, 48.5, 48.2 at 589 nm and 49.5, 49.0 at 650 nm. Seven electron probe micro-analyses of vymazalováite give an average composition: Pd 40.42, Bi 49.15, Ag 0.55, Pb 1.02, S 7.77 and Se 0.26, total 99.17 wt.%, corresponding to the empirical formula Pd3.05(Bi1.89Ag0.04Pb0.04)Σ1.97(S1.95Se0.03)Σ1.98 based on a total of 7 atoms per formula unit. The simplified formula is Pd3Bi2S2. The mineral is cubic, space group I213, with a = 8.3097(9) Å, V = 573.79(1) Å3 and Z = 4. The density calculated on the basis of the empirical formula and cell dimensions of synthetic vymazalováite is 9.25 g/cm3. The strongest lines in the powder X-ray diffraction pattern of synthetic vymazalováite [d in Å (I) (hkl)] are: 4.15(32)(200), 2.93(78)(220), 2.40(100)(220), 2.08(53)(400), 1.695(34)(422), 1.468(35)(440) and 1.252(31)(622). The structural identity of natural vymazalováite with synthetic Pd3Bi2S2 was confirmed by electron back-scatter diffraction measurements on the natural sample. This new mineral honours Dr Anna Vymazalová of the Czech Geological Survey, Prague.


Author(s):  
Dan Holtstam ◽  
Luca Bindi ◽  
Paola Bonazzi ◽  
Hans-Jürgen Förster ◽  
Ulf B. Andersson

ABSTRACT Arrheniusite-(Ce) is a new mineral (IMA 2019-086) from the Östanmossa mine, one of the Bastnäs-type deposits in the Bergslagen ore region, Sweden. It occurs in a metasomatic F-rich skarn, associated with dolomite, tremolite, talc, magnetite, calcite, pyrite, dollaseite-(Ce), parisite-(Ce), bastnäsite-(Ce), fluorbritholite-(Ce), and gadolinite-(Nd). Arrheniusite-(Ce) forms anhedral, greenish-yellow translucent grains, exceptionally up to 0.8 mm in diameter. It is optically uniaxial (–), with ω = 1.750(5), ε = 1.725(5), and non-pleochroic in thin section. The calculated density is 4.78(1) g/cm3. Arrheniusite-(Ce) is trigonal, space group R3m, with unit-cell parameters a = 10.8082(3) Å, c = 27.5196(9) Å, and V = 2784.07(14) Å3 for Z = 3. The crystal structure was refined from X-ray diffraction data to R1 = 3.85% for 2286 observed reflections [Fo > 4σ(Fo)]. The empirical formula for the fragment used for the structural study, based on EPMA data and results from the structure refinement, is: (Ca0.65As3+0.35)Σ1(Mg0.57Fe2+0.30As5+0.10Al0.03)Σ1[(Ce2.24Nd2.13La0.86Gd0.74Sm0.71Pr0.37)Σ7.05(Y2.76Dy0.26Er0.11Tb0.08Tm0.01Ho0.04Yb0.01)Σ3.27Ca4.14]Σ14.46(SiO4)3[(Si3.26B2.74)Σ6O17.31F0.69][(As5+0.65Si0.22P0.13)Σ1O4](B0.77O3)F11; the ideal formula obtained is CaMg[(Ce7Y3)Ca5](SiO4)3(Si3B3O18)(AsO4)(BO3)F11. Arrheniusite-(Ce) belongs to the vicanite group of minerals and is distinct from other isostructural members mainly by having a Mg-dominant, octahedrally coordinated site (M6); it can be considered a Mg-As analog to hundholmenite-(Y). The threefold coordinated T5 site is partly occupied by B, like in laptevite-(Ce) and vicanite-(Ce). The mineral name honors C.A. Arrhenius (1757–1824), a Swedish officer and chemist, who first discovered gadolinite-(Y) from the famous Ytterby pegmatite quarry.


2021 ◽  
pp. 1-8
Author(s):  
Jiří Sejkora ◽  
Pavel Škácha ◽  
Jakub Plášil ◽  
Zdeněk Dolníček ◽  
Jana Ulmanová

Abstract The new mineral hrabákite (IMA2020-034) was found in siderite–sphalerite gangue with minor dolomite–ankerite at the dump of shaft No. 9, one of the mines in the abandoned Příbram uranium and base-metal district, central Bohemia, Czech Republic. Hrabákite is associated with Pb-rich tučekite, Hg-rich silver, stephanite, nickeline, millerite, gersdorffite, sphalerite and galena. The new mineral occurs as rare prismatic crystals up to 120 μm in size and allotriomorphic grains. Hrabákite is grey with a brownish tint. Mohs hardness is ca. 5–6; the calculated density is 6.37 g.cm–3. In reflected light, hrabákite is grey with a brown hue. Bireflectance is weak and pleochroism was not observed. Anisotropy under crossed polars is very weak (brownish tints) to absent. Internal reflections were not observed. Reflectance values of hrabákite in air (Rmin–Rmax, %) are: 39.6–42.5 at 470 nm, 45.0–47.5 at 546 nm, 46.9–49.2 at 589 nm and 48.9–51.2 at 650 nm). The empirical formula for hrabákite, based on electron-microprobe analyses (n = 11), is (Ni8.91Co0.09Fe0.03)9.03(Pb0.94Hg0.04)0.98(Sb0.91As0.08)0.99S7.99. The ideal formula is Ni9PbSbS8, which requires Ni 47.44, Pb 18.60, Sb 10.93 and S 23.03, total of 100.00 wt.%. Hrabákite is tetragonal, P4/mmm, a = 7.3085(4), c = 5.3969(3) Å, with V = 288.27(3) Å3 and Z = 1. The strongest reflections of the calculated powder X-ray diffraction pattern [d, Å (I)(hkl)] are: 3.6543(57)(200); 3.2685(68)(210); 2.7957(100)(211); 2.3920(87)(112); 2.3112(78)(310); 1.8663(74)(222); and 1.8083(71)(302). According to the single-crystal X-ray diffraction data (Rint = 0.0218), the unit cell of hrabákite is undoubtedly similar to the cell reported for tučekite. The structure contains four metal cation sites, two Sb (Sb1 dominated by Pb2+) and two Ni (with minor Co2+ content) sites. The close similarity in metrics between hrabákite and tučekite is due to similar bond lengths of Pb–S and Sb–S pairs. Hrabákite is named after Josef Hrabák, the former professor of the Příbram Mining College.


2020 ◽  
Vol 58 (4) ◽  
pp. 421-436 ◽  
Author(s):  
Nikita V. Chukanov ◽  
Sergey M. Aksenov ◽  
Igor V. Pekov ◽  
Dmitriy I. Belakovskiy ◽  
Svetlana A. Vozchikova ◽  
...  

ABSTRACT The new eudialyte-group mineral sergevanite, ideally Na15(Ca3Mn3)(Na2Fe)Zr3Si26O72(OH)3·H2O, was discovered in highly agpaitic foyaite from the Karnasurt Mountain, Lovozero alkaline massif, Kola Peninsula, Russia. The associated minerals are microcline, albite, nepheline, arfvedsonite, aegirine, lamprophyllite, fluorapatite, steenstrupine-(Ce), ilmenite, and sphalerite. Sergevanite forms yellow to orange-yellow anhedral grains up to 1.5 mm across and the outer zones of some grains of associated eudialyte. Its luster is vitreous, and the streak is white. No cleavage is observed. The Mohs' hardness is 5. Density measured by equilibration in heavy liquids is 2.90(1) g/cm3. Calculated density is equal to 2.906 g/cm3. Sergevanite is nonpleochroic, optically uniaxial, positive, with ω = 1.604(2) and ε = 1.607(2) (λ = 589 nm). The infrared spectrum is given. The chemical composition of sergevanite is (wt.%; electron microprobe, H2O determined by HCN analysis): Na2O 13.69, K2O 1.40, CaO 7.66, La2O3 0.90, Ce2O3 1.41, Pr2O3 0.33, Nd2O3 0.64, Sm2O3 0.14, MnO 4.15, FeO 1.34, TiO2 1.19, ZrO2 10.67, HfO2 0.29, Nb2O5 1.63, SiO2 49.61, SO3 0.77, Cl 0.23, H2O 4.22, –O=Cl –0.05, total 100.22. The empirical formula (based on 25.5 Si atoms pfu, in accordance with structural data) is H14.46Na13.64K0.92Ca4.22Ce0.27La0.17Nd0.12Pr0.06Sm0.02Mn1.81Fe2+0.58Ti0.46Zr2.67Hf0.04Nb0.38Si25.5S0.30Cl0.20O81.35. The crystal structure was determined using single-crystal X-ray diffraction data. The new mineral is trigonal, space group R3, with a = 14.2179(1) Å, c = 30.3492(3) Å, V = 5313.11(7) Å3, and Z = 3. In the structure of sergevanite, Ca and Mn are ordered in the six-membered ring of octahedra (at the sites M11 and M12), and Na dominates over Fe2+ at the M2 site. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 7.12 (70) (110), 5.711 (43) (202), 4.321 (72) (205), 3.806 (39) (033), 3.551 (39) (220, 027), 3.398 (39) (313), 2.978 (95) (), 2.855 (100) (404). Sergevanite is named after the Sergevan' River, which is near the discovery locality.


Sign in / Sign up

Export Citation Format

Share Document