Mineral chemistry and reaction textures in metabasites from the Eastern Ghats belt, India and their implications

1993 ◽  
Vol 57 (386) ◽  
pp. 113-120 ◽  
Author(s):  
Somnath Dasgupta ◽  
Pulak Sengupta ◽  
A. Mondal ◽  
M. Fukuoka

AbstractThree types of mafic granulites, namely two pyroxene-plagioclase granutite (MG), two pyroxeneplagioclase-garnet granulite (GMG) and spinel-olivine-plagioclase-two pyroxene granulite (SMG) are exposed at Sunkarimetta, Eastern Ghats belt, India. The marie granulites exhibit a foliation concordant with that in associated granulite facies quartzofeldspathic gneisses. Textural characteristics and mineral chemical data suggest the following mineral reactions: olivine + plagioclase = spinel + orthopyroxene + clinopyroxene (SMG), orthopyroxene + plagioclase = garnet + quartz (GMG), clinopyroxene + plagioclase = garnet + quartz (GMG) and plagioclase + hemoilmenite + quartz = garnet + ilmenite + 02 (GMG). Geothermobarometry indicates maximum P-T conditions of metamorphism at c. 8.5 kbar, 950°C The marie granulites later suffered nearly isobaric cooling to c. 7.5 kbar, 750°C Bulk compositional characteristics suggest that SMG is of cumulate origin. The protoliths of the mafic granulites, emplaced at c. 32 km depth, are probably responsible for thermal perturbation causing granulite facies metamorphism of the enclosing rocks.

2020 ◽  
Vol 84 (5) ◽  
pp. 712-737 ◽  
Author(s):  
Sankar Bose ◽  
Kaushik Das ◽  
Junji Torimoto ◽  
Daniel Dunkley

AbstractOrthopyroxene-bearing felsic gneiss occurs as foliation-parallel layers and bands together with aluminous granulite, mafic granulite, and quartzofeldspathic granulite in the Chilka Lake migmatite complex of the Proterozoic Eastern Ghats Belt, India. The rock was classified previously as charnockite which underwent granulite-facies metamorphism. Field and textural features of this rock show evidence of the partial melting of a biotite-bearing greywacke protolith. Orthopyroxene with/without garnet and cordierite were produced with K-feldspar as peritectic phases of incongruent melting of presumed metaluminous sediments. Fluid-inclusion data suggest the presence of high-density CO2-rich fluids during peak metamorphism, which are similar to those found in associated aluminous granulite. Whole-rock major and trace element data show wide variability of the source materials whereas REE distributions show enriched LREE and flat HREE patterns. Zircon grains from representative samples show the presence of inherited cores having spot dates (SHRIMP) in the range c. 1790–3270 Ma. The overgrowth on zircon was formed predominantly during c. 780–730 Ma and sporadically during c. 550–520 Ma. Some neoblastic zircons with c. 780–730 Ma ages are also present. U-rich dark zones surrounding cores appear partially metamictised, but spot ages from this zone vary within c. 1000–900 Ma. The <1000 Ma ages represent metamorphism that mirrors the events in associated aluminous granulite. The sources of metaluminous sediments are speculative as the rock compositions are largely modified under granulite-facies metamorphism and partial melting. Considering the accretionary tectonic setting of the Eastern Ghats Belt during the c. 1000–900 Ma time frame, a greywacke-type protolith for the migmatite complex has been proposed.


2019 ◽  
Vol 131 (9-10) ◽  
pp. 1591-1606 ◽  
Author(s):  
Hailin Wu ◽  
Wenbin Zhu ◽  
Rongfeng Ge

Abstract Granulite occupies the root of orogenic belts, and understanding its formation and evolution may provide critical information on orogenic processes. Previous studies have mainly focused on garnet-bearing high-pressure and medium-pressure granulites, whereas the metamorphic evolution and pressure-temperature (P-T) paths of garnet-absent, low-pressure granulites are more difficult to constrain. Here, we present zircon U-Pb ages and mineral chemistry for a suite of newly discovered two-pyroxene granulites in the North Altyn Tagh area, southeastern Tarim craton, northwestern China. Conventional geothermobarometry and phase equilibrium modeling revealed that these rocks experienced a peak granulite-facies metamorphism at T = 790–890 °C and P = 8–11 kbar. The mineral compositions and retrograde symplectites record a clockwise cooling and exhumation path, possibly involving near-isothermal decompression followed by near-isobaric cooling. Zircon U-Pb dating yielded a ca. 1.97 Ga metamorphic age, which likely represents the initial cooling age, based on Ti-in-zircon thermometry. Combined with regional geological records, we interpret that these granulites originated from the basement rocks of a late Paleoproterozoic magmatic arc that was subsequently involved in a collisional orogen in the southern Tarim craton, presumably related to the assembly of the Columbia/Nuna supercontinent. The clockwise P-T paths of the granulites record crustal thickening and burial followed by crustal thinning and exhumation in the upper plate of the collisional orogen. Our data indicate that the initial exhumation of this orogen probably occurred no later than ca. 1.97 Ga, which is supported by widespread 1.93–1.85 Ga postorogenic magmatism in this area.


2014 ◽  
Vol 152 (2) ◽  
pp. 316-340 ◽  
Author(s):  
DIVYA PRAKASH ◽  
DEEPAK ◽  
PRAVEEN CHANDRA SINGH ◽  
CHANDRA KANT SINGH ◽  
SUPARNA TEWARI ◽  
...  

AbstractThe Diguva Sonaba area (Vishakhapatnam district, Andhra Pradesh, South India) represents part of the granulite-facies terrain of the Eastern Ghats Mobile Belt. The Precambrian metamorphic rocks of the area predominantly consist of mafic granulite (±garnet), khondalite, leptynite (±garnet, biotite), charnockite, enderbite, calc-granulite, migmatic gneisses and sapphirine–spinel-bearing granulite. The latter rock type occurs as lenticular bodies in khondalite, leptynite and calc-granulite. Textural relations, such as corroded inclusions of biotite within garnet and orthopyroxene, resorbed hornblende within pyroxenes, and coarse-grained laths of sillimanite, presumably pseudomorphs after kyanite, provide evidence of either an earlier episode of upper-amphibolite-facies metamorphism or they represent relics of the prograde path that led to granulite-facies metamorphism. In the sapphirine–spinel-bearing granulite, osumilite was stable in addition to sapphirine, spinel and quartz during the thermal peak of granulite-facies metamorphism but the assemblage was later replaced by Crd–Opx–Qtz–Kfs-symplectite and a variety of reaction coronas during retrograde overprint. Variable amounts of biotite or biotite+quartz symplectite replaced orthopyroxene, cordierite and Opx–Crd–Kfs–Qtz-symplectite at an even later retrograde stage. Peak metamorphic conditions of c. 1000°C and c. 12 kbar were computed by isopleths of XMg in garnet and XAl in orthopyroxene. The sequence of reactions as deduced from the corona and symplectite assemblages, together with petrogenetic grid and pseudosection modelling, records a clockwise P–T evolution. The P–T path is characteristically T-convex suggesting an isothermal decompression path and reflects rapid uplift followed by cooling of a tectonically thickened crust.


2001 ◽  
Vol 138 (5) ◽  
pp. 609-618 ◽  
Author(s):  
S. BHATTACHARYA ◽  
RAJIB KAR ◽  
S. MISRA ◽  
W. TEIXEIRA

The Eastern Ghats granulite belt of India has traditionally been described as a Proterozoic mobile belt, with probable Archaean protoliths. However, recent findings suggest that synkinematic development of granulites took place in a compressional tectonic regime and that granulite facies metamorphism resulted from crustal thickening. The field, petrological and geochemical studies of a charnockite massif of tonalitic to trondhjemitic composition, and associated rocks, document granulite facies metamorphism and dehydration partial melting of basic rocks at lower crustal depths, with garnet granulite residues exposed as cognate xenoliths within the charnockite massif. The melting and generation of the charnockite suite under granulite facies conditions have been dated c. 3.0 Ga by Sm–Nd and Rb–Sr whole rock systematics and Pb–Pb zircon dating. Sm–Nd model dates between 3.4 and 3.5 Ga and negative epsilon values provide evidence of early Archaean continental crust in this high-grade terrain.


2021 ◽  
Author(s):  
Padmaja Jayalekshmi ◽  
Tapabrato Sarkar ◽  
Somnath Dasgupta ◽  
Rajneesh Bhutani

&lt;p&gt;The Bastar Craton at the interface of Eastern Ghats Belt (EGB) contains a m&amp;#233;lange of rocks from both the Archean cratonic domain and the adjacent Proterozoic mobile belt domain marking a broad shear zone, known as the Terrane Boundary Shear Zone (TBSZ). The TBSZ preserves a very rare occurrence of high-grade metamorphosed Archean cratonic rocks, whose ancestry has been constrained by Nd model ages. This study presents the petrological and geochemical characterization of mafic granulites and orthopyroxene bearing granitoids from the shear zone and its implications on the tectonic evolution of the craton &amp;#8211; mobile belt boundary. Detailed petrographic, geothermobarometric and P-T pseudosection studies indicate that the Bastar cratonic rocks underwent high-pressure granulite facies metamorphism along a clockwise P-T path, reaching ~900&amp;#176;C and 9-10 kbar. The originally amphibolite facies rocks, metamorphosed through dehydration-melting of hornblende (mafic rocks) and biotite (felsic rocks), to attain the peak P-T conditions. We suggest that this high-grade metamorphism was due to the subduction/underthrusting of the Bastar Craton beneath the EGB, supported by the available seismic data, which resulted from far-field stress related to the Kuunga orogeny in an intraplate setting.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document