Genesis of chemical sediments in Birimian greenstone belts: evidence from gondites and related manganese-bearing rocks from Northern Ghana

1995 ◽  
Vol 59 (395) ◽  
pp. 229-251 ◽  
Author(s):  
Frank Melcher

AbstractEarly Proterozoic chemical sediments of the Birimian Supergroup in northern Ghana host several types of metamorphosed manganese-bearing rocks. Differences in the mineralogy and geochemistry can be attributed to facies changes in a mixed volcanic-volcaniclastic depositional environment. Manganese oxide-bearing phyllite, which is enriched in transition metals (Cu, Ni, Co, Zn), formed on the flanks of submarine volcanic edifices above an oxidation boundary. Towards the deeper basin, manganese silicate-rich gondites occur. These consist either of spessartine + quartz + ilmenite, or of spessartine + quartz + Mn amphiboles ± rhodonite ± hyalophane ± Mn stilpnomelane ± ilmenite. The Mn amphiboles are identified as manganoan actinolite, tirodite, and dannemorite. Sulphides are widespread as premetamorphic inclusions in Mn garnet grains. In the basin centre, chlorite schist containing garnet with 50–60 mol.% spessartine represents the most distal manganese-bearing rock which is highly diluted by volcanogenic background sedimentation. The origin of Mn-rich rocks is explained by heat-driven seawater convection systems active in submarine volcanic centres that provided hydrothermal solutions. Precipitation of different minerals depended on the geochemical conditions prevailing on the seafloor. During the Eburnean event (around 2000 Ma), the chemical sediments were metamorphosed to upper greenschist or lower amphibolite facies. Mineral assemblages in the gondites point to metamorphic conditions in the range of 450–500°C at 2–3 kbar.

1994 ◽  
Vol 58 (392) ◽  
pp. 387-399 ◽  
Author(s):  
Peter L. McSwiggen ◽  
G. B. Morey ◽  
Jane M. Cleland

AbstractThe recent discovery of hyalophane [(K,Ba)Al1−2Si3−2O8] on the North range segment of the Early Proterozoic Cuyuna Iron Range of east-central Minnesota has shed new light on the depositional environment of these rocks. This Ba-feldspar occurs in a 10 m thick interval within the main iron-formation and typically contains between 8 and 26 mol.% celsian (BaAl2Si2O8). Its occurrence in several textural settings suggests that barium was being deposited at various stages in the paragenetic history of the iron-formation. Some of the hyalophane grains occur as the cores of micronodules, which are structurally similar to oolites or oncolites, but mineralogically are very complex. The hyalophane also occurs as rims on core grains of diverse mineral composition and as discrete phases in late crosscutting veins.Hyalophane, like other Ba-silicates, has a very restricted paragenesis. They are associated typically either with sedimentary manganese and ferromanganese deposits, or with Cu-Pb-Zn-Ba deposits. The presence of hyalophane in the Early Proterozoic manganiferous iron ores of east-central Minnesota casts doubt on the historic interpretation of these deposits as typical Superior-type sedimentary iron-formations and instead supports the view that these deposits, at least in part, consist of chemical sediments from a hydrothermal fumarolic system. The suggested involvement of a hydrothermal system is also supported by the occurrence of aegirine within the hyalophane-rich layer, and the occurrence of tourmalinites and Sr-rich baryte veins elsewhere in the Cuyuna North range.


1970 ◽  
Vol 5 ◽  
pp. 91-96
Author(s):  
Md Rahat Hossain ◽  
Ismail Hossain ◽  
ASM Zahid Hossain ◽  
Prodip Kumar Biswas

The present study deals with petrology of the detrital gravelly rocks from Bhajanpur area, Panchagarh, Bangladesh. The results of detailed petrography of gravelly rocks indicate the presence of quartz (monocrystalline and polycrystalline quartz), K-feldspar, plagioclase, chlorite, muscovite and biotite as major mineralogical compositions. Other minor minerals are garnet, kyanite, graphite and opaque minerals. Based on definitive mineral assemblages, blueschist and greenschist facies sequences are recognized. Correspondingly, index minerals provide chlorite zone, biotite zone, garnet zone, kyanite zone, and graphite zone. The P-T conditions of the studied rocks demonstrate the possible temperature ranges 300-550°C and pressure ranges 2-10 kbar. Most common varieties of metamorphic rocks in the study area are garnet mica schist, chlorite schist, gneiss and few quartzites. Characteristics of garnet mica schist and chlorite schist are equivalent with the lesser Himalayan metamorphic rock sequence in Sikkim area, whereas gneiss from Bhajanpur area has similar precursor as Darjeeling gneiss. Therefore, the sources of detrital metamorphic rocks in Bhajanpur area obviously come from the lesser Himalayan sequence in Sikkim and Darjeeling areas, India. Key words: Petrology; metamorphic rocks; gravels; P-T conditions; Panchagarh; lesser Himalayan sequence DOI: 10.3329/jles.v5i0.7357 J. Life Earth Sci., Vol. 5: 91-96, 2010


This contribution is concerned with the regional metamorphism of fine-grained (pelitic) sedimentary materials, and with the pelitic components of coarser sediments. It emphasizes the possible importance of purely chemical sedimentary rocks, and the preservation of chemical patterns within them, in the elucidation of some regional metamorphic mineralogical processes. The materials and examples used come largely from the category of exhalative sediments, of which stratiform metallic sulphide orebodies and their associated exhalites are important members. A few examples come from volcanic rocks that have been altered by exhalative processes. The special significance of chemical sediments stems from their propensity for the development of highly complex metamorphic silicate mineral assemblages within relatively minuscule volumes of rock, and from their commonly sharply defined chemical bedding and chemical sedimentary facies patterns. As the primary nature of such chemical bedding and chemical layering and zoning in completely unmetamorphosed materials is observable and known, and as their sharp boundaries and other well-defined features can be examined in a full range of unmetamorphosed to highly metamorphosed environments, they may be used as extremely sensitive markers for the detection and measurement of any chemical movement that may have taken place during regional metamorphism. Detailed examination of such evidence appears to indicate a general lack of diffusion and reaction, and a common lack of attainment of mineral equilibrium, in the development of the regional metamorphic silicate assemblages of a number of such stratiform ore deposits and their associated exhalative materials. This, together with the common interbedded nature of metamorphic silicate, sulphide, carbonate, etc., and the faithful maintenance of primary sedimentary chemical facies patterns within many exhalative metasediments suggests that the silicates, like the accompanying sulphides and associated compounds, may derive directly and in situ from early-formed precursor materials rather than from extensive elemental diffusion and metamorphic reaction. That particular clays and zeolites derive from specific precursors in many instances has been recognized for a long time. That many metamorphosed bedded oxides (including quartz), together with carbonates, sulphates, sulphides and authigenic silicates such as the feldspars, have derived from sedimentary: diagenetic precursors is self-evident and unavoidable, and establishes precursor derivation for at least some regional metamorphic minerals as a principle, not an hypothesis. What is not known, however, is the extent to which this principle applies to the broader spectrum of metamorphic silicates. The present contribution examines this problem. The evidence of ‘ metamorphic ’ silicates in a range of unmetamorphosed and littlemetamorphosed rocks, in present ocean-floor sediments, in unmetamorphosed volcanic alteration products and in modern geothermal systems is examined. The preservation of possible precursor materials in a variety of rocks, and the synthesis of a number of ‘ metamorphic ’ minerals by low-temperature solution experimentation and in low-temperature industrial products is considered. It is deduced that most of the well-known regional metamorphic minerals may in fact be produced directly from low-temperature sedimentary/diagenetic/alteration materials, and that such precursors may be of simple or complex kind. It is suggested that the direct derivation of regional metamorphic silicates from precursors may resolve the problem of the elusive metamorphic mineral reaction, and that the principal regional metamorphic grade indicators may be the temperatures of precursor transformations rather than temperatures of reactions. Several implications of the precursor principle are then examined: its significance in the interpretation of zoning of regional metamorphic mineral assemblages and mineral chemistry; in considerations of metamorphic grade and the development of grainsize; in the identities of certain metamorphic equilibria, intergrowths and ‘retrograde’ materials; and in the deduction of earlier environments of rock formation and alteration. In this general connection it is proposed that the overall regional metamorphic process may be substantially indigenous: that through their primary nature certain materials, e.g. some andesitic-dacitic volcaniclastic rocks, may be predisposed to metamorphose themselves, and that this may be accentuated by the petro-tectonic setting in which they form, e.g. island arc - eugeosynclinal provinces, with their characteristically inter-related calc-alkaline volcanism, riftrelated palaeogeographical features and highly patterned heat flow. Effects of climate may be superimposed on this: some of the more highly developed regional metamorphic zoning may arise in calc-alkaline volcanic sediments deposited in tropical island arc shelf areas, and in sediments laid down in large saline lakes of continental volcanic rift provinces. From all this it is proposed that the ambit of regional metamorphic petrology may be much wider than currently visualized. Just as precursor-derived oxides, carbonates, sulphates, graphite, pyrite, etc., of high-grade metasedimentary rocks may give clear indications concerning the nature and environments of formation of the original sediments, so the metamorphic silicates may yield subtle insights into palaeoprovenance, palaeogeography, palaeoclimate and a variety of weathering, volcanic alteration, sea-floor hydrothermal and other regimes. The application of metamorphic mineralogy and mineral chemistry to the search for stratiform ores in metamorphosed terranes may constitute one of the major advances in mineral exploration in the near future. It appears that there is considerable scope for further searching for possible precursor material in a variety of rocks and modern sediments (especially those of the present-day volcanic-sedimentary milieu), extension of clay and mixed-layer clay-chlorite-zeolite mineral synthesis in low-temperature-pressure laboratory experiment, and for the investigation of the behaviour of these synthetic products at metamorphic temperatures and pressures.


1992 ◽  
Vol 155 ◽  
pp. 73-78
Author(s):  
P.W.U Appel

In the mid-Archaean supracrustal rocks of Bjørnesund south of Fiskenæsset metre wide anthophyllite-rich zones are found hosted in mafic volcanics. These zones, which are locally associated with sulphides, are interpreted as alteration zones from hydrothermal solutions which circulated through the volcano-sedimentary pile; in places they contain thin tourmalinites. The tourmaline composition and geologic setting of the occurrences closely resemble stratabound tourmalinites of submarine hydrothermal origin which elsewhere are associated with metalliferous deposits. It is concluded that the presence of the Bjørnesund tourmalinites associated with anthophyllite zones indicates that hydrothermal processes were once active in the depositional environment where the Bjørnesund supracrustals were formed; in other regions such processes are known to have generated massive sulphide ore bodies.


1989 ◽  
Vol 176 ◽  
Author(s):  
T. Ohnuki ◽  
T. Murakami ◽  
K. Sekine ◽  
N. Yanase ◽  
H. Isobe ◽  
...  

ABSTRACTThe migration behavior of uranium series nuclides in an altered quartz-chlorite schist has been studied by utilizing data on the activity distributions of uranium series nuclides at Koongarra in the Northern Territory of Australia. The variation of 230Th/234U activity ratios (ARs) with distance along surface (2 m depth), intermediate (16 m) and deep (31 m) layers show different trends in the three layers parallel to the water flow. The relationship between the 234U/238U and 230Th/238U ARs reveals that the mobility of the uranium series nuclides is in order 238U, 234U and 230Th, and that the retardation factors oft 234U are greater than those of 238U by a factor of 1.1, 1.9 and 1.0 in the surface, intermediate and deep layers, respectively. X-ray diffraction patterns show different mineral assemblages, which are the alteration products of chlorite at the three layers. These results imply that the migration behavior of uranium series nuclides at each depth would be related to the alteration of chlorite.


Sign in / Sign up

Export Citation Format

Share Document