Kintoreite, PbFe3(PO4)2(OH,H2O)6, a new mineral of the jarosite-alunite family, and lusungite discredited

1995 ◽  
Vol 59 (394) ◽  
pp. 143-148 ◽  
Author(s):  
A. Pring ◽  
W. D. Birch ◽  
J. Dawe ◽  
M. Taylor ◽  
M. Deliens ◽  
...  

AbstractKintoreite is a new lead iron phosphate mineral in the alunite-jarosite family, from Broken Hill, New South Wales, Australia. It is the phosphate analogue of segnitite and the iron analogue of plumbogummite. Kintoreite occurs as clusters and coatings of cream to yellowish green rhombohedral crystals up to 2 mm high and with the principal form {112}. The mineral also forms waxy, yellowish green globular crusts and hemispheres on other phosphate minerals. These associated species include pyromorphite, libethenite, rockbridgeite/dufrenite, apatite and goethite. Kintoreite formed during oxidation of primary ore rich in galena, in the presence of solutions with high P/(As + S) ratios. The mineral is named for the locality, the Kintore opencut, in which it is most common. A mineral closely resembling kintoreite in composition has also been found at several mines in Germany. Type material is preserved in the Museum of Victoria and the South Australian Museum.Electron microprobe analysis showed a nearly complete spread of compositions across the P-dominant portion of the segnitite-kintoreite series. The selected type specimen has an empirical formula of Pb0.97(Fe2.95Zn0.13Cu0.02)Σ3.10[(PO4)1.30(AsO4)0.39(SO4)0.18(CO3)0.11]Σ1.98(OH)5.45·0.74H2O, calculated on the basis of 14 oxygens and with all Fe trivalent. The simplified formula is PbFe3(PO4)2(OH,H2O)6. Kintoreite crystals are translucent with a vitreous to adamantine lustre, with globules appearing waxy. The streak is pale yellowish green and the Mohs hardness is ∼ 4. Crystals show good cleavage on {001} and are brittle with a rough fracture. The calculated density is 4.34 g cm−3. Kintoreite crystals are uniaxial negative with RIs between 1.935 and 1.955 and show light yellowish green to medium yellow pleochroism.The strongest lines in the X-ray powder pattern are (dobs, Iobs, hkl) 3.07(100) 113; 5.96(90)101; 3.67(60)110; 2.538(50)024; 2.257(50)107; 1.979(50)303; 1.831(40)220. The X-ray data were indexed on a hexagonal unit cell by analogy with beudantite, giving a = 7.325(1) Å, c = 16.900(3) Å, V = 785.3(5) Å3 and Z = 3. The probable space group is Rm, by analogy with beudantite and other members of the alunite-jarosite family. Powder X-ray diffraction data for several intermediate members suggest that the segnitite-kintoreite series may not represent ideal solid solution.During the study of kintoreite, part of the type specimen of lusungite from Zaïre was obtained and shown to be goyazite. The IMA's Commission on New Minerals and Mineral Names has voted to discredit lusungite as a species, and has approved the renaming of the ‘lusungite’ group as the segnitite group. However, as relationships between crystal structure, order-disorder and solid solution in the Pb-rich minerals of the alunite-jarosite family are not well documented, the nomenclatural changes resulting from this study should be seen as interim only.

Author(s):  
Dan Holtstam ◽  
Luca Bindi ◽  
Paola Bonazzi ◽  
Hans-Jürgen Förster ◽  
Ulf B. Andersson

ABSTRACT Arrheniusite-(Ce) is a new mineral (IMA 2019-086) from the Östanmossa mine, one of the Bastnäs-type deposits in the Bergslagen ore region, Sweden. It occurs in a metasomatic F-rich skarn, associated with dolomite, tremolite, talc, magnetite, calcite, pyrite, dollaseite-(Ce), parisite-(Ce), bastnäsite-(Ce), fluorbritholite-(Ce), and gadolinite-(Nd). Arrheniusite-(Ce) forms anhedral, greenish-yellow translucent grains, exceptionally up to 0.8 mm in diameter. It is optically uniaxial (–), with ω = 1.750(5), ε = 1.725(5), and non-pleochroic in thin section. The calculated density is 4.78(1) g/cm3. Arrheniusite-(Ce) is trigonal, space group R3m, with unit-cell parameters a = 10.8082(3) Å, c = 27.5196(9) Å, and V = 2784.07(14) Å3 for Z = 3. The crystal structure was refined from X-ray diffraction data to R1 = 3.85% for 2286 observed reflections [Fo > 4σ(Fo)]. The empirical formula for the fragment used for the structural study, based on EPMA data and results from the structure refinement, is: (Ca0.65As3+0.35)Σ1(Mg0.57Fe2+0.30As5+0.10Al0.03)Σ1[(Ce2.24Nd2.13La0.86Gd0.74Sm0.71Pr0.37)Σ7.05(Y2.76Dy0.26Er0.11Tb0.08Tm0.01Ho0.04Yb0.01)Σ3.27Ca4.14]Σ14.46(SiO4)3[(Si3.26B2.74)Σ6O17.31F0.69][(As5+0.65Si0.22P0.13)Σ1O4](B0.77O3)F11; the ideal formula obtained is CaMg[(Ce7Y3)Ca5](SiO4)3(Si3B3O18)(AsO4)(BO3)F11. Arrheniusite-(Ce) belongs to the vicanite group of minerals and is distinct from other isostructural members mainly by having a Mg-dominant, octahedrally coordinated site (M6); it can be considered a Mg-As analog to hundholmenite-(Y). The threefold coordinated T5 site is partly occupied by B, like in laptevite-(Ce) and vicanite-(Ce). The mineral name honors C.A. Arrhenius (1757–1824), a Swedish officer and chemist, who first discovered gadolinite-(Y) from the famous Ytterby pegmatite quarry.


2021 ◽  
pp. 1-8
Author(s):  
Jiří Sejkora ◽  
Pavel Škácha ◽  
Jakub Plášil ◽  
Zdeněk Dolníček ◽  
Jana Ulmanová

Abstract The new mineral hrabákite (IMA2020-034) was found in siderite–sphalerite gangue with minor dolomite–ankerite at the dump of shaft No. 9, one of the mines in the abandoned Příbram uranium and base-metal district, central Bohemia, Czech Republic. Hrabákite is associated with Pb-rich tučekite, Hg-rich silver, stephanite, nickeline, millerite, gersdorffite, sphalerite and galena. The new mineral occurs as rare prismatic crystals up to 120 μm in size and allotriomorphic grains. Hrabákite is grey with a brownish tint. Mohs hardness is ca. 5–6; the calculated density is 6.37 g.cm–3. In reflected light, hrabákite is grey with a brown hue. Bireflectance is weak and pleochroism was not observed. Anisotropy under crossed polars is very weak (brownish tints) to absent. Internal reflections were not observed. Reflectance values of hrabákite in air (Rmin–Rmax, %) are: 39.6–42.5 at 470 nm, 45.0–47.5 at 546 nm, 46.9–49.2 at 589 nm and 48.9–51.2 at 650 nm). The empirical formula for hrabákite, based on electron-microprobe analyses (n = 11), is (Ni8.91Co0.09Fe0.03)9.03(Pb0.94Hg0.04)0.98(Sb0.91As0.08)0.99S7.99. The ideal formula is Ni9PbSbS8, which requires Ni 47.44, Pb 18.60, Sb 10.93 and S 23.03, total of 100.00 wt.%. Hrabákite is tetragonal, P4/mmm, a = 7.3085(4), c = 5.3969(3) Å, with V = 288.27(3) Å3 and Z = 1. The strongest reflections of the calculated powder X-ray diffraction pattern [d, Å (I)(hkl)] are: 3.6543(57)(200); 3.2685(68)(210); 2.7957(100)(211); 2.3920(87)(112); 2.3112(78)(310); 1.8663(74)(222); and 1.8083(71)(302). According to the single-crystal X-ray diffraction data (Rint = 0.0218), the unit cell of hrabákite is undoubtedly similar to the cell reported for tučekite. The structure contains four metal cation sites, two Sb (Sb1 dominated by Pb2+) and two Ni (with minor Co2+ content) sites. The close similarity in metrics between hrabákite and tučekite is due to similar bond lengths of Pb–S and Sb–S pairs. Hrabákite is named after Josef Hrabák, the former professor of the Příbram Mining College.


2016 ◽  
Vol 80 (7) ◽  
pp. 1243-1254 ◽  
Author(s):  
I. E. Grey ◽  
E. Keck ◽  
W. G. Mumme ◽  
A. Pring ◽  
C. M. Macrae ◽  
...  

AbstractKummerite, ideally Mn2+Fe3+A1(PO4)2(OH)2.8H2O, is a new secondary phosphate mineral belonging to the laueite group, from the Hagendorf-Süd pegmatite, Hagendorf, Oberpfalz, Bavaria, Germany. Kummerite occurs as sprays or rounded aggregates of very thin, typically deformed, amber yellow laths. Cleavage is good parallel to ﹛010﹜. The mineral is associated closely with green Zn- and Al-bearing beraunite needles. Other associated minerals are jahnsite-(CaMnMn) and Al-bearing frondelite. The calculated density of kummerite is 2.34 g cm 3. It is optically biaxial (-), α= 1.565(5), β = 1.600(5) and y = 1.630(5), with weak dispersion. Pleochroism is weak, with amber yellow tones. Electron microprobe analyses (average of 13 grains) with H2O and FeO/Fe2O3 calculated on structural grounds and normalized to 100%, gave Fe2O3 17.2, FeO 4.8, MnO 5.4, MgO 2.2, ZnO 0.5, Al2O3 9.8, P2O5 27.6, H2O 32.5, total 100 wt.%. The empirical formula, based on 3 metal apfu is (Mn2+0.37Mg0.27Zn0.03Fe2+0.33)Σ1.00(Fe3+1.06Al0. 94)Σ2.00PO4)1.91(OH)2.27(H2O)7.73. Kummerite is triclinic, P1̄, with the unit-cell parameters of a = 5.316(1) Å, b =10.620(3) Å , c = 7.118(1) Å, α = 107.33(3)°, β= 111.22(3)°, γ = 72.22(2)° and V= 348.4(2) Å3. The strongest lines in the powder X-ray diffraction pattern are [dobs in Å(I) (hkl)] 9.885 (100) (010); 6.476 (20) (001); 4.942 (30) (020); 3.988 (9) (̄110); 3.116 (18) (1̄20); 2.873 (11) (1̄21). Kummerite is isostructural with laueite, but differs in having Al and Fe3+ ordered into alternate octahedral sites in the 7.1 Å trans-connected octahedral chains.


2018 ◽  
Vol 82 (1) ◽  
pp. 133-144 ◽  
Author(s):  
Luiz A. D. Menezes Filho ◽  
Mario L. S. C. Chaves ◽  
Nikita V. Chukanov ◽  
Daniel Atencio ◽  
Ricardo Scholz ◽  
...  

ABSTRACTParisite-(La) (IMA2016-031), ideally CaLa2(CO3)3F2, occurs in a hydrothermal vein crosscutting a metarhyolite of the Rio dos Remédios Group, at the Mula mine, Tapera village, Novo Horizonte county, Bahia, Brazil, associated with hematite, rutile, almeidaite, fluocerite-(Ce), brockite, monazite-(La), rhabdophane-(La) and bastnäsite-(La). Parisite-(La) occurs as residual nuclei (up to 5 mm) in steep doubly-terminated pseudo-hexagonal pyramidal crystals (up to 8.2 cm). Parisite-(La) is transparent, yellow-green to white, with a white streak and displays a vitreous (when yellow-green) to dull (when white) lustre. Cleavage is distinct on pseudo-{001}; fracture is laminated, conchoidal, or uneven. The Mohs hardness is 4 to 5, and it is brittle. Calculated density is 4.273 g cm−3. Parisite-(La) is pseudo-uniaxial (+), ω = 1.670(2) and ε = 1.782(5) (589 nm). The empirical formula normalized on the basis of 11 (O + F) atoms per formula unit (apfu) is Ca0.98(La0.83Nd0.51Ce0.37Pr0.16Sm0.04Y0.03)Σ1.94C3.03O8.91F2.09. The IR spectrum confirms the absence of OH groups. Single-crystal X-ray studies gave the following results: monoclinic (pseudo-trigonal), space group: C2, Cm, or C2/m, a = 12.356(1) Å, b = 7.1368(7) Å, c = 28.299(3) Å, β = 98.342(4)°, V = 2469.1(4) Å3 and Z = 12. Parisite-(La) is the La-dominant analogue of parisite-(Ce).


2020 ◽  
Vol 58 (4) ◽  
pp. 421-436 ◽  
Author(s):  
Nikita V. Chukanov ◽  
Sergey M. Aksenov ◽  
Igor V. Pekov ◽  
Dmitriy I. Belakovskiy ◽  
Svetlana A. Vozchikova ◽  
...  

ABSTRACT The new eudialyte-group mineral sergevanite, ideally Na15(Ca3Mn3)(Na2Fe)Zr3Si26O72(OH)3·H2O, was discovered in highly agpaitic foyaite from the Karnasurt Mountain, Lovozero alkaline massif, Kola Peninsula, Russia. The associated minerals are microcline, albite, nepheline, arfvedsonite, aegirine, lamprophyllite, fluorapatite, steenstrupine-(Ce), ilmenite, and sphalerite. Sergevanite forms yellow to orange-yellow anhedral grains up to 1.5 mm across and the outer zones of some grains of associated eudialyte. Its luster is vitreous, and the streak is white. No cleavage is observed. The Mohs' hardness is 5. Density measured by equilibration in heavy liquids is 2.90(1) g/cm3. Calculated density is equal to 2.906 g/cm3. Sergevanite is nonpleochroic, optically uniaxial, positive, with ω = 1.604(2) and ε = 1.607(2) (λ = 589 nm). The infrared spectrum is given. The chemical composition of sergevanite is (wt.%; electron microprobe, H2O determined by HCN analysis): Na2O 13.69, K2O 1.40, CaO 7.66, La2O3 0.90, Ce2O3 1.41, Pr2O3 0.33, Nd2O3 0.64, Sm2O3 0.14, MnO 4.15, FeO 1.34, TiO2 1.19, ZrO2 10.67, HfO2 0.29, Nb2O5 1.63, SiO2 49.61, SO3 0.77, Cl 0.23, H2O 4.22, –O=Cl –0.05, total 100.22. The empirical formula (based on 25.5 Si atoms pfu, in accordance with structural data) is H14.46Na13.64K0.92Ca4.22Ce0.27La0.17Nd0.12Pr0.06Sm0.02Mn1.81Fe2+0.58Ti0.46Zr2.67Hf0.04Nb0.38Si25.5S0.30Cl0.20O81.35. The crystal structure was determined using single-crystal X-ray diffraction data. The new mineral is trigonal, space group R3, with a = 14.2179(1) Å, c = 30.3492(3) Å, V = 5313.11(7) Å3, and Z = 3. In the structure of sergevanite, Ca and Mn are ordered in the six-membered ring of octahedra (at the sites M11 and M12), and Na dominates over Fe2+ at the M2 site. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 7.12 (70) (110), 5.711 (43) (202), 4.321 (72) (205), 3.806 (39) (033), 3.551 (39) (220, 027), 3.398 (39) (313), 2.978 (95) (), 2.855 (100) (404). Sergevanite is named after the Sergevan' River, which is near the discovery locality.


2011 ◽  
Vol 75 (5) ◽  
pp. 2677-2686 ◽  
Author(s):  
L. Bindi ◽  
C. Carbone ◽  
R. Cabella ◽  
G. Lucchetti

AbstractBassoite, ideally SrV3O7·4H2O, is a new mineral from the Molinello manganese mine, Val Graveglia. eastern Liguria, northern Apennines, Italy. It occurs as black euhedral to subhedral grains up to 400 urn across, closely associated with rhodonite, quartz and braunite. Bassoite is opaque with a sub-metallic lustre and a black streak. It is brittle and neither fracture nor cleavage was observed; the Vickers micro-hardness (VHN100) is 150 kg/mm (range 142—165; corresponding to a Mohs hardness of 4—41/2). The calculated density is 2.940 g/cm3 (on the basis of the empirical formula and X-ray single-crystal data). Bassoite is weakly bireflectant and very weakly pleochroic from grey to a dark green. Internal reflections are absent. The mineral is anisotropic, without characteristic rotation tints. Reflectance percentages (Rmin and Rmax) for the four standard COM wavelengths are 18.5%, 19.0% (471.1 nm); 17.2%, 17.8% (548.3 nm); 16.8%, 17.5% (586.6 nm) and 16.2%, 16.8% (652.3 nm), respectively.Bassoite is monoclinic, space group P21/m, with unit-cell parameters: a = 5.313(3) Å, b = 10.495(3) Å, c = 8.568(4) Å, β = 91.14(5)°, V= 477.7(4) Å3, a:b:c = 0.506:1:0.816, and Z = 2. The crystal structure was refined to R1 = 0.0209 for 1148 reflections with Fo > 4σ(Fo) and it consists of layers of VO5 pyramids (with vanadium in the tetravalent state) pointing up and down alternately with Sr between the layers (in nine-fold coordination). The nine most intense X-ray powder-diffraction lines [d in Å (I/I0) (hkt)] are: 8.5663 (100) (001); 6.6363 (14) (011); 3.4399 (14) (1̄21); 3.4049 (17) (121); 2.8339 (15) (1̄22); 2.7949 (11) (122); 2.6550 (15) (200); 2.6237 (11) (040) and 1.8666 (15) (240). Electron microprobe analyses produce a chemical formula (Sr0.97Ca0.02Na0.01)V3.00O74H20, on the basis of 2(Sr+Ca+Na) = 1, taking the results of the structure refinement into account. The presence of water molecules was confirmed by micro-Raman spectroscopy. The name honours Riccardo Basso (b. 1947), full professor of Mineralogy and Crystallography at the University of Genova. The new mineral and mineral name have been approved by the Commission on New Minerals, Nomenclature and Classification, IMA (2011-028).


2004 ◽  
Vol 68 (2) ◽  
pp. 241-245 ◽  
Author(s):  
A. C. Roberts ◽  
J. A. R. Stirling ◽  
A. J. Criddle ◽  
G. E. Dunning ◽  
J. Spratt

AbstractAurivilliusite, ideally Hg2+Hg1+OI, is monoclinic, C 2/c, with unit-cell parameters refined from X-ray powder data: a= 17.580(6), b= 6.979(1), c= 6.693(3)Å, β = 101.71(4)°, V = 804.0(5)Å3, a:b:c= 2.5190:1:0.9590,Z = 8. The strongest six lines of the X-ray powder-diffraction pattern [din Å (I )(hkl)] are: 8.547(70)(200), 3.275(100)(002), 2.993(80)(2̄21), 2.873(80)(600), 2.404(50b)(6̄02, 421, 2̄22) and 1.878(50)(2̄23). This extremely rare mineral was collected from a small prospect pit near the longabandoned Clear Creek mercury mine, New Idria district, San Benito County, California, USA. It is intimately intermixed with another new undefined Hg-O-I phase (‘CCUK-15’), and is also closely associated with native mercury, cinnabar and edgarbaileyite in a host rock principally composed of quartz and magnesite. Aurivilliusite occurs in a cm-wide quartz vein predominantly as irregular-shaped thin patches ‘splattered’ on the quartz surface; patches vary in size from 10–20 μm up to 0.5 mm. The only known subhedral platy brightly reflecting crystal fragment, with major ﹛100﹜ form and distinct ﹛100﹜ cleavage, did not exceed 0.2 mm in longest dimension. The mineral is dark grey-black with a dark red-brown streak. Physical properties include: metallic lustre; opaque; non-fluorescent; brittle; uneven fracture; calculated density 8.96 g/cm3 (empirical formula), 8.99 g/cm3 (ideal formula). In polished section in plane-polarized reflected light, aurivilliusite resembles cinnabar, is extremely light sensitive, shows twinning and no internal reflections, and exhibits an unusual ‘red light’ coalescing phenomena. Averaged and corrected results of electron-microprobe analyses yielded HgO 40.10, Hg2O 38.62, I 22.76, Br 0.22, Cl 0.06, sum 101.76, less O = I + Br + Cl –1.46, total 100.30 wt.%, corresponding to Hg1.002+Hg1.001+ O1.01(I0.97Br0.01Cl0.01)Σ0.99, based on O + I + Br + Cl = 2 atoms per formula unit (a.p.f.u.). The original value for Hg, 74.27 wt.%, was partitioned in a HgO:Hg2O ratio of 1:1 after the discovery of the crystal-structure paper dealing with the synthetic equivalent of aurivilliusite. The mineral name is in honour of the late Dr Karin Aurivillius (1920 –1982), chemistcrystallographer at the University of Lund, Sweden, for her significant contributions to the crystal chemistry of Hg-bearing inorganic compounds. Aurivilliusite is related chemically to terlinguaite, Hg2+Hg1+OCl, but has a different structure and X-ray characteristics.


Author(s):  
F. A. Bannister

Concentrates from the platiniferous norites of the Bushveld, Transvaal, are not completely soluble in aqua regia. The insoluble portion consists of steel-grey fragments first analysed chemically by R. A. Cooper and considered by him to be a new platinum mineral represented by the formula Pt(As,S)2. The name cooperite was proposed for the new mineral by F. Wartenweiller, and after further work Cooper decided that the arsenic found in the early analysis was due to the presence of sperrylite, and he changed the formula to PtS2. H. Schneiderhöhn observed simple twinning and, less frequently, polysynthetie lamellae on polished sections of mineral grains from the same deposits, and he suggested that cooperite is probably orthorhombic and isomorphous with marcasite. The latest account of the new mineral has been published by H. R. Adam who gave several analyses of cooperite from the Rustenburg and Potgietersrust districts and concluded that the ‘mineral is PtS2 with a small amount of excess metal (platinum, palladium, and nickel) present in solid solution’.


2014 ◽  
Vol 78 (7) ◽  
pp. 1629-1645 ◽  
Author(s):  
Anna Garavelli ◽  
Daniela Pinto ◽  
Donatella Mitolo ◽  
Luca Bindi

AbstractLeguernite, ideally Bi12.67O14(SO4)5, is a new mineral found in high-temperature fumarolic assemblages at La Fossa crater, Vulcano, Aeolian Islands, Italy. It occurs as aggregates of needleshaped crystals associated strictly with anglesite, balićžunićite and an unknown Bi sulfate. Leguernite is colourless to white, transparent, non-fluorescent, has a sub-adamantine lustre and a white streak. Electron microprobe data led to the chemical formula (on the basis of 34 anions p.f.u.) (Bi12.40Pb0.15)Σ=12.55S5.08O34. The calculated density is 7.375 g cm–3. A Raman spectrum collected on a single crystal of leguernite confirmed the anhydrous nature of the mineral.Leguernite is monoclinic, space group P2, with a = 11.2486(11), b = 5.6568(6), c = 11.9139(10) Å , β = 99.177(7)º, V = 748.39(12) Å3 and Z = 1. The crystal structure is built up of Bi–O blocks of a fluorite-like structure with Bi12O14 composition separated by a single sulfate ion along [100] and by Bi(SO4)45– groups along [101]. It can also be described as composed of (001) layers with composition [Bi12O14(SO4)6+]n alternating with layers of composition [Bi(SO4)4]n5– along [001]. Leguernite shows significant similarities with the synthetic Bi14O16(SO4)5 compound.The eight strongest reflections in the powder X-ray diffraction data [d in Å (I) (hkl)] are: 3.220 (100) (013), 3.100 (95) (11), 2.83 (30) (020), 2.931 (25) (302), 2.502 (25) (04), 2.035 (20) (322), 1.875 (20) (24) and 5.040 (15) (110).The name is in honour of Franc¸ois “Fanfan” Le Guern (1942–2011), who was a very active volcanologist and specialist in volcanic gases and sublimates. Both the mineral and the mineral name have been approved by the IMA-CNMNC (2013–051).


2014 ◽  
Vol 78 (3) ◽  
pp. 747-755 ◽  
Author(s):  
A. R. Kampf ◽  
B. P. Nash ◽  
M. Dini ◽  
A. A. Molina Donoso

AbstractThe new mineral torrecillasite (IMA2013-112), Na(As,Sb)43+O6Cl, was found at the Torrecillas mine, Iquique Province, Chile, where it occurs as a secondary alteration phase in association with anhydrite, cinnabar, gypsum, halite, lavendulan, magnesiokoritnigite, marcasite, quartz, pyrite, scorodite, wendwilsonite and other potentially new As-bearing minerals. Torrecillasite occurs as thin colourless prisms up to 0.4 mm long in jack-straw aggregates, as very thin fibres in puff balls and as massive intergrowths of needles. Prisms are elongated on [100] with diamond-shaped cross-section and irregular terminations. Crystals are transparent, with adamantine lustre and white streak. The Mohs hardness is 2½, tenacity is brittle and fracture is irregular. Cleavage on (001) is likely. The calculated density is 4.056 g cm−3. Optically, torrecillasite is biaxial (−) with α = 1.800(5), β = 1.96(1), γ = 2.03(calc.) (measured in white light). The measured 2V is 62.1(5)°, no dispersion or pleochroism were observed, the optical orientation isX=c,Y=b,Z=a. The mineral is very slowly soluble in H2O, slowly soluble in dilute HCl and rapidly soluble in concentrated HCl. The empirical formula, determined from electron-microprobe analyses, is (Na1.03Mg0.02)∑1.05(As3.39Sb0.62)∑4.01O6.07Cl0.93. Torrecillasite is orthorhombic,Pmcn, a= 5.2580(9),b= 8.0620(13),c= 18.654(3) Å,V= 790.7(2) Å3andZ= 4. The eight strongest X-ray powder diffraction lines are [dobsÅ(I)(hkl)]: 4.298(33)(111), 4.031(78)(014,020), 3.035(100)(024,122), 2.853(39)(115,123), 2.642(84)(124,200), 2.426(34)(125), 1.8963(32)(225) and 1.8026(29)(0·1·10,233). The structure, refined toR1= 4.06% for 814Fo>4σFreflections, contains a neutral, wavy As2O3layer parallel to (001) consisting of As3+O3pyramids that share O atoms to form six-membered rings. Successive layers are flipped relative to one another and successive interlayer regions contain alternately either Na or Cl atoms. Torrecillasite is isostructural with synthetic orthorhombic NaAs4O6Br.


Sign in / Sign up

Export Citation Format

Share Document