In situ X-ray absorption spectroscopy measurement of vapour-brine fractionation of antimony at hydrothermal conditions

2008 ◽  
Vol 72 (2) ◽  
pp. 667-681 ◽  
Author(s):  
G. S. Pokrovski ◽  
J. Roux ◽  
J.-L. Hazemann ◽  
A. YU. Borisova ◽  
A. A. Gonchar ◽  
...  

AbstractDespite the growing geological evidence that fluid boiling and vapour-liquid separation affect the distribution of metals in magmatic-hydrothermal systems significantly, there are few experimental data on the chemical status and partitioning of metals in the vapour and liquid phases. Here we report on an in situ measurement, using X-ray absorption fine structure (XAFS) spectroscopy, of antimony speciation and partitioning in the system Sb2O3-H2O-NaCl-HCl at 400°C and pressures 270—300 bar corresponding to the vapour-liquid equilibrium. Experiments were performed using a spectroscopic cell which allows simultaneous determination of the total concentration and atomic environment of the absorbing element (Sb) in each phase. Results show that quantitative vapour-brine separation of a supercritical aqueous salt fluid can be achieved by a controlled decompression and monitoring the X-ray absorbance of the fluid phase. Antimony concentrations in equilibrium with Sb2O3 (cubic, senarmontite) in the coexisting vapour and liquid phases and corresponding SbIII vapour-liquid partitioning coefficients are in agreement with recent data obtained using batch-reactor solubility techniques. The XAFS spectra analysis shows that hydroxy-chloride complexes, probably Sb(OH)2Cl0, are dominant both in the vapour and liquid phase in a salt-water system at acidic conditions. This first in situ XAFS study of element fractionation between coexisting volatile and dense phases opens new possibilities for systematic investigations of vapour-brine and fluid-melt immiscibility phenomena, avoiding many experimental artifacts common in less direct techniques.

2011 ◽  
Vol 51 (1) ◽  
pp. 414-419 ◽  
Author(s):  
V. Ranieri ◽  
J. Haines ◽  
O. Cambon ◽  
C. Levelut ◽  
R. Le Parc ◽  
...  

1997 ◽  
Vol 7 (C2) ◽  
pp. C2-619-C2-620 ◽  
Author(s):  
M. Giorgett ◽  
I. Ascone ◽  
M. Berrettoni ◽  
S. Zamponi ◽  
R. Marassi

2019 ◽  
Author(s):  
Jisue Moon ◽  
Carter Abney ◽  
Dmitriy Dolzhnikov ◽  
James M. Kurley ◽  
Kevin A. Beyer ◽  
...  

The local structure of dilute CrCl<sub>3</sub> in a molten MgCl<sub>2</sub>:KCl salt was investigated by <i>in situ</i> x-ray absorption spectroscopy (XAS) at temperatures from room temperature to 800<sup>o</sup>C. This constitutes the first experiment where dilute Cr speciation is explored in a molten chloride salt, ostensibly due to the compounding challenges arising from a low Cr concentration in a matrix of heavy absorbers at extreme temperatures. CrCl<sub>3</sub> was confirmed to be the stable species between 200 and 500<sup>o</sup>C, while mobility of metal ions at higher temperature (>700<sup>o</sup>C) prevented confirmation of the local structure.


Author(s):  
Kazumasa Murata ◽  
Junya Ohyama ◽  
Atsushi Satsuma

In the present study, the redispersion behavior of Ag particles on ZSM-5 in the presence of coke was observed using in situ X-ray absorption fine structure (XAFS) spectroscopy.


2021 ◽  
Author(s):  
Gregory M. Su ◽  
Han Wang ◽  
Brandon R. Barnett ◽  
Jeffrey R. Long ◽  
David Prendergast ◽  
...  

In situ near edge X-ray absorption fine structure spectroscopy directly probes unoccupied states associated with backbonding interactions between the open metal site in a metal–organic framework and various small molecule guests.


2003 ◽  
Vol 107 (46) ◽  
pp. 12562-12565 ◽  
Author(s):  
Shuji Matsuo ◽  
Ponnusamy Nachimuthu ◽  
Dennis W. Lindle ◽  
Hisanobu Wakita ◽  
Rupert C. C. Perera

2019 ◽  
Vol 48 (21) ◽  
pp. 7122-7129 ◽  
Author(s):  
Chia-Jui Chang ◽  
You-Chiuan Chu ◽  
Hao-Yu Yan ◽  
Yen-Fa Liao ◽  
Hao Ming Chen

The state-of-art RuO2 catalyst for the oxygen evolution reaction (OER) is measured by using in situ X-ray absorption spectroscopy (XAS) to elucidate the structural transformation during catalyzing the reaction in acidic and alkaline conditions.


Sign in / Sign up

Export Citation Format

Share Document