Fassinaite, Pb22+(S2O3)(CO3), the first mineral with coexisting thiosulphate and carbonate groups:d escription and crystal structure

2011 ◽  
Vol 75 (6) ◽  
pp. 2721-2732 ◽  
Author(s):  
L. Bindi ◽  
F. Nestola ◽  
U. Kolitsch ◽  
A. Guastoni ◽  
F. Zorzi

AbstractFassinaite, ideally Pb22+(S2O3)(CO3), is a new mineral from the Trentini mine, Mount Naro, Vicenza Province, Veneto, Italy (holotype locality). It is also reported from the Erasmus adit, Schwarzleo District, Leogang, Salzburg, Austria and the Friedrich-Christian mine, Schapbach, Black Forest, Baden-Wurttemberg, Germany (cotype localities). At the Italian type locality it occurs as acicular [010]. colourless crystals up to 200 μn long, closely associated with galena, quartz and anglesite. At the Austrian cotype locality it is associated with cerussite, rare sulphur and very rare phosgenite. At the German cotype locality anglesite is the only associated phase. Fassinaite crystals commonly have flat chisel-shaped terminations. They are transparent with vitreous to adamantine lustre and a white streak. Fassinaite is brittle with an irregular fracture and no discernible cleavage; the estimated Mohs hardness is 11/2—2. The calculated density for the type material is 6.084 g cm–3 (on the basis of the empirical formula), whereas the X-ray density is 5.947 g cm–3. In common with other natural lead thiosulphates (i.e. sidpietersite and steverustite) fassinaite has intense internal reflections, which do not allow satisfactory optical data to be collected; the crystals are length-slow and have very high birefringence. The mineral is not fluorescent.Fassinaite is orthorhombic, space group Pnma, with unit-cell parameters (for the holotype material) a = 16.320(2), b = 8.7616(6), c = 4.5809(7) Å, V = 655.0(1) Å3, a:b:c = 1.863:1:0.523, Z = 4. Single-crystal structural studies were carried out on crystals from all three localities: R1(F) values range between 0.0353 and 0.0596. The structure consists of rod-like arrangements of Pb-centred polyhedra that extend along the [010] direction. These ‘rods’ are linked, alternately, by (CO3)2– and (S2O3)2– groups. The (S2O3)2– groups point alternately left and right (in a projection on [001] with [010] set vertical) if the apex occupied by the S2– in the thiosulphate group is defined to be the atom giving the direction. The lead atoms are nine-coordinated by seven oxygen atoms and two sulphur (S2–) atoms. The eight strongest X-ray powder-diffraction lines [d in Å (I/I0) (hkl)] are: 4.410 (39) (101), 4.381 (59) (020), 4.080 (62) (400), 3.504 (75) (301), 3.108 (100) (121), 2.986 (82) (420), 2.952 (49) (221) and 2.736 (60) (321). Electron-microprobe analyses produce an empirical formula Pb2.01(1)(S1.82(2)O3)CO3 (on the basis of six oxygen atoms). The presence of both carbonate and thiosulphate groups was corroborated by Raman spectra, which are discussed in detail. Fassinaite is named after Bruno Fassina (b. 1943), an Italian mineral collector who discovered the mineral in 2009.

1995 ◽  
Vol 59 (395) ◽  
pp. 305-310 ◽  
Author(s):  
A. C. Roberts ◽  
J. A. R. Stirling ◽  
G. J. C. Carpenter ◽  
A. J. Criddle ◽  
G. C. Jones ◽  
...  

AbstractShannonite, ideally Pb2OCO3, is a new mineral species that occurs as mm-sized white porcellanous crusts, associated with fluorite, at the Grand Reef mine, Graham County, Arizona, USA. Other associated minerals are plumbojarosite, hematite, Mn-oxides, muscovite-2M1, quartz, litharge, massicot, hydrocerussite, minium, and unnamed PbCO3·2PbO. Shannonite is orthorhombic, space group P21221 or P212121, with unit-cell parameters (refined from X-ray powder data): a 9.294(3), b 9.000(3), c 5.133(2) Å, V 429.3(3) Å3, a:b:c 1.0327:1:0.5703, Z = 4. The strongest five lines in the X-ray powder pattern [d in Å (I)(hkl)] are: 4.02(40)(111); 3.215(100)(211); 3.181(90)(121); 2.858(40)(130); 2.564(35)(002). The average of eight electron microprobe analyses is PbO 89.9(5), CO2 (by CHN elemental analyser) 9.70, total 99.60 wt.%. With O = 4, the empirical formula is Pb1.91C1.05O4.00. The calculated density for the empirical formula is 7.31 and for the idealized formula is 7.59 g/cm3. In reflected light, shannonite is colourless-grey to white, with ubiquitous white internal reflections (× 16 objectives), weak anisotropy, barely detectable bireflectance, and no evidence of pleochroism. The calculated refractive index (at 590 nm) is 2.09. Measured reflectance values in air and in oil (× 4 objectives) are tabulated. Transmission electron-microscopy studies reveal that individual crystallites range in size from 10–400 nm, are platy, and are anhedral. Physical properties for cryptocrystalline crusts include: white streak; waxy lustre; opaque; nonfluorescent under both long- and short-wave ultraviolet light; uneven fracture; brittle; VHN100 97 (range 93–100); calculated Mohs’ hardness 3–3½. Shannonite is soluble in concentrated HCl and in dilute HNO3 and H2SO4. The mineral name is for David M. Shannon, who helped collect the samples and who initiated this study.


2010 ◽  
Vol 74 (3) ◽  
pp. 463-468 ◽  
Author(s):  
V. A. Kovalenker ◽  
O. Yu. Plotinskaya ◽  
C. J. Stanley ◽  
A. C. Roberts ◽  
A. M. McDonald ◽  
...  

AbstractKurilite, with the simplified formula, Ag8Te3Se, is a new mineral from the Prasolovskoe epithermal Au-Ag deposit, Kunashir Island, Kuril arc, Russian Federation. It occurs as aggregates up to 2 mm in size, composed of brittle xenomorphic grains, up to several μm in size, in quartz, associated with tetrahedrite, hessite, sylvanite and petzite. Kurilite is opaque, grey, with a metallic lustre and a black streak. Under plane-polarized light, kurilite is white with no observed bireflectance, cleavage, or parting observed. Under crossed polars it appears isotropic without internal reflections. Reflectance values in air and in oil, are tabulated. It has a mean VHN (25 g load) of 99.9 kg/mm2 which equates roughly to a Mohs hardness of 3. Electron microprobe analyses yield a mean composition of Ag 63.71, Au 0.29, Te 29.48, Se 5.04, S 0.07, total 98.71 wt.%. The empirical formula (based on 12 atoms) is (Ag7.97Au0.02)Σ7.99Te3.00(Se0.86Te0.12S0.03)Σ1.01. The calculated density is 7.799 g/cm3 (based on the empirical formula and unit-cell parameters refined from single-crystal data). Kurilite is rhombohedral, R3 or , a 15.80(1), c 19.57(6) Å, V 4231(12)Å3, c:a 1.2386, Z = 15. Its crystal structure remains unsolved. The seven strongest lines of the X-ray powder-diffraction pattern [d in Å (I)(hkl)] are: 3.727(20)(131), 2.996(50)(232), 2.510(30)(226,422), 2.201(100)(128,416,342), 2.152(20)(603), 2.079(30)(253), 2.046(20)(336,434). The mineral is named after the locality.


2018 ◽  
Vol 83 (02) ◽  
pp. 233-238
Author(s):  
Frank N. Keutsch ◽  
Dan Topa ◽  
Rie Takagi Fredrickson ◽  
Emil Makovicky ◽  
Werner H. Paar

AbstractAgmantinite, ideally Ag2MnSnS4, is a new mineral from the Uchucchacua polymetallic deposit, Oyon district, Catajambo, Lima Department, Peru. It occurs as orange–red crystals up to 100 μm across. Agmantinite is translucent with adamantine lustre and possesses a red streak. It is brittle. Neither fracture nor cleavage were observed. Based on the empirical formula the calculated density is 4.574 g/cm3. On the basis of chemically similar compounds the Mohs hardness is estimated at between 2 to 2½. In plane-polarised light agmantinite is white with red internal reflections. It is weakly bireflectant with no observable pleochroism with red internal reflections. Between crossed polars, agmantinite is weakly anisotropic with reddish brown to greenish grey rotation tints. The reflectances (RminandRmax) for the four standard wavelengths are: 19.7 and 22.0 (470 nm); 20.5 and 23.2 (546 nm); 21.7 and 2.49 (589 nm); and 20.6 and 23.6 (650 nm), respectively.Agmantinite is orthorhombic, space groupP21nm, with unit-cell parameters:a= 6.632(2),b= 6.922(2),c= 8.156(2) Å,V= 374.41(17) Å3,a:b:c0.958:1:1.178 andZ= 2. The crystal structure was refined toR= 0.0575 for 519 reflections withI >2σ(I). Agmantinite is the first known mineral of${M}_{\rm 2}^{\rm I} $MIIMIVS4type that is derived from wurtzite rather than sphalerite by ordered substitution of Zn, analogous to the substitution pattern for deriving stannite from sphalerite. The six strongest X-ray powder-diffraction lines derived from single-crystal X-ray diffraction data [din Å (intensity)] are: 3.51 (s), 3.32 (w), 3.11 (vs), 2.42 (w), 2.04 (m) and 1.88 (m). The empirical formula (based on 8 apfu) is (Ag1.94Cu0.03)Σ1.97(Mn0.98Zn0.05)Σ1.03Sn0.97S4.03.The crystal structure-derived formula is Ag2(Mn0.69Zn0.31)Σ1.00SnS4and the simplified formula is Ag2MnSnS4.The name is for the composition and the new mineral and mineral name have been approved by the International Mineralogical Association Commission on New Minerals, Nomenclature and Classification (IMA2014-083).


2013 ◽  
Vol 77 (6) ◽  
pp. 2811-2823 ◽  
Author(s):  
A. R. Kampf ◽  
S. J. Mills ◽  
R. M. Housley ◽  
G. R. Rossman ◽  
B. P. Nash ◽  
...  

AbstractJoteite (IMA2012-091), Ca2CuAl[AsO4][AsO3(OH)]2(OH)2·5H2O, is a new mineral from the Jote mine, Tierra Amarilla, Copiapó Province, Atacama, Chile. The mineral is a late-stage, low-temperature, secondary mineral occurring with conichalcite, mansfieldite, pharmacoalumite, pharmacosiderite and scorodite in narrow seams and vughs in the oxidized upper portion of a hydrothermal sulfide vein hosted by volcanoclastic rocks. Crystals occur as sky-blue to greenish-blue thin blades, flattened and twinned on {001}, up to ~300 μm in length, and exhibiting the forms {001}, {010}, {10}, {20} and {111}. The blades are commonly intergrown in wheat-sheaf-like bundles, less commonly in sprays, and sometimes aggregated as dense crusts and cavity linings. The mineral is transparent and has a very pale blue streak and vitreous lustre. The Mohs hardness is estimated at 2 to 3, the tenacity is brittle, and the fracture is curved. It has one perfect cleavage on {001}. The calculated density based on the empirical formula is 3.056 g/cm3. It is optically biaxial (–) with α = 1.634(1), β = 1.644(1), γ = 1.651(1) (white light), 2Vmeas = 78(2)° and 2Vcalc = 79.4°. The mineral exhibits weak dispersion, r < v. The optical orientation is X ≈ c*; Y ≈ b*. The pleochroism is Z (greenish blue) > Y (pale greenish blue) > X (colourless). The normalized electron-microprobe analyses (average of 5) provided: CaO 15.70, CuO 11.22, Al2O38.32, As2O546.62, H2O 18.14 (structure), total 100 wt.%. The empirical formula (based on 19 O a.p.f.u.) is: Ca1.98Cu1.00Al1.15As2.87H14.24O19. The mineral is slowly soluble in cold, concentrated HCl. Joteite is triclinic, P1, with the cell parameters: a = 6.0530(2), b = 10.2329(3), c = 12.9112(4) Å, α = 87.572(2), β = 78.480(2), γ = 78.697(2)°, V = 768.40(4) Å3 and Z = 2. The eight strongest lines in the X-ray powder diffraction pattern are [dobs Å (I)(hkl)]: 12.76(100)(001), 5.009(23)(020), 4.206(26)(120,003,121), 3.92(24)(022,02,02), 3.40(25)(1̄13), 3.233(19)(031,023,123,02̄3), 2.97(132,201) and 2.91(15)(22,13). In the structure of joteite (R1 = 7.72% for 6003 Fo > 4σF), AsO4 and AsO3 (OH) tetrahedra, AlO6 octahedra and Cu2+O5 square pyramids share corners to form sheets parallel to {001}. In addition, 7- and 8-coordinate Ca polyhedra link to the periphery of the sheets yielding thick slabs. Between the slabs are unconnected AsO3(OH) tetrahedra, which link the slabs only via hydrogen bonding. The Raman spectrum shows features consistent with OH and/or H2O in multiple structural environments. The region between the slabs may host excess Al in place of some As.


2014 ◽  
Vol 78 (1) ◽  
pp. 131-144 ◽  
Author(s):  
P. Elliott ◽  
G. Giester ◽  
R. Rowe ◽  
A. Pring

AbstractPutnisite, SrCa4Cr83+ (CO7)8SO4(OH)16·25H2O, is a new mineral from the Polar Bear peninsula, Southern Lake Cowan, Western Australia, Australia. The mineral forms isolated pseudocubic crystals up to 0.5 mm in size in a matrix composed of quartz and a near amorphous Cr silicate. Putnisite is translucent, with a pink streak and vitreous lustre. It is brittle and shows one excellent and two good cleavages parallel to {100}, {010} and {001}. The fracture is uneven and the Mohs hardness 1½−2. The measured density is 2.20(3) g/cm3 and the calculated density based on the empirical formula is 2.23 g/cm3. Optically, putnisite is biaxial negative, with α = 1.552(3), β = 1.583(3) and γ = 1.599(3) (measured in white light). The optical orientation is uncertain and pleochroism is distinct: X pale bluish grey, Y pale purple, Z pale purple. Putnisite is orthorhombic, space group Pnma, with a = 15.351(3), b = 20.421(4) Å, c = 18.270(4) Å, V = 5727(2) Å3 (single-crystal data), and Z = 4. The strongest five lines in the X-ray powder diffraction pattern are [d(Å)(I)(hkl)]: 13.577 (100) (011), 7.659 (80) (200), 6.667 (43) (211), 5.084 (19) (222, 230), 3.689 (16) (411). Electron microprobe analysis (EMPA) gave (wt.%): Na2O 0.17, MgO 0.08, CaO 10.81, SrO 5.72, BaO 0.12, CuO 0.29, Cr2O3 31.13, SO3 3.95, SiO2 0.08, Cl− 0.28, CO2calc 17.94, H2Ocalc 30.30, O=Cl−0.06, total 100.81. The empirical formula, based on O + Cl = 69, is: Cr8.023+Ca3.78Sr1.08Na0.11Cu0.072+Mg0.04Ba0.02[(SO4)0.96(SiO4)0.03]0.99 (CO3)7.98(OH)16.19Cl0.15·24.84H2O. The crystal structure was determined from single-crystal X-ray diffraction data (MoKα, CCD area detector and refined to R1 = 5.84% for 3181 reflections with F0 > 4σF. Cr(OH)4O2 octahedra link by edge-sharing to form an eight-membered ring. A 10-coordinated Sr2+ cation lies at the centre of each ring. The rings are decorated by CO3 triangles, each of which links by corner-sharing to two Cr(OH)4O2 octahedra. Rings are linked by Ca(H2O)4O4 polyhedra to form a sheet parallel to (100). Adjacent sheets are joined along [100] by corner-sharing SO4 tetrahedra. H2O molecules occupy channels that run along [100] and interstices between slabs. Moderate to weak hydrogen bonding provides additional linkage between slabs.


2015 ◽  
Vol 79 (2) ◽  
pp. 345-354 ◽  
Author(s):  
Anthony R. Kampf ◽  
Stuart J. Mills ◽  
Barbara P. Nash ◽  
Maurizio Dini ◽  
Arturo A. Molina Donoso

AbstractTapiaite (IMA2014-024), Ca5Al2(AsO4)4(OH)4·12H2O, is a new mineral from the Jote mine, Tierra Amarilla, Copiapó Province, Atacama, Chile. The mineral is a late-stage, low-temperature, secondary mineral occurring with conichalcite, joteite, mansfieldite, pharmacoalumite, pharmacosiderite and scorodite in narrow seams and vughs in the oxidized upper portion of a hydrothermal sulfide vein hosted by volcanoclastic rocks. Crystals occur as colourless blades, flattened on {101} and elongated and striated along [010], up to ∼0.5 mm long, and exhibiting the forms {101}, {101} and {111}. The blades are commonly intergrown in subparallel bundles and less commonly in sprays. The mineral is transparent and has a white streak and vitreous lustre. The Mohs hardness is estimated to be between 2 and 3, the tenacity is brittle, and the fracture is splintery. It has two perfect cleavages on {101} and {101}. The calculated density based on the empirical formula is 2.681 g cm–3. It is optically biaxial (+) with α = 1.579(1), β = 1.588(1), γ = 1.610(1) (white light), 2Vmeas = 66(2)° and 2Vcalc = 66°. The mineral exhibits no dispersion. The optical orientation is X ≈ [101]; Y = b, Z ≈ [101]. The electron-microprobe analyses (average of five) provided: Na2O 0.09, CaO 24.96, CuO 0.73, Al2O3 10.08, Fe2O3 0.19, As2O5 40.98, Sb2O5 0.09, H2 O 23.46 (structure), total 100.58 wt.%. In terms of the structure, the empirical formula (based on 32 O a.p.f.u.) is (Ca4.83Cu0.102+Na0.03)Σ4.96(Al2.14Fe0.033+)Σ2.17[(As3.875+Sb0.015+)Σ3.88O16][(OH)3.76(H2O)0.24]Σ4(H2O)10·2H2O. The mineral is easily soluble in RT dilute HCl. Tapiaite is monoclinic, P21/n, with unit-cell parameters a = 16.016(1), b = 5.7781(3), c = 16.341(1) Å, β = 116.704(8)°, V = 1350.9(2) Å3 and Z = 2. The eight strongest lines in the powder X-ray diffraction pattern are [dobs Å(I)(hkl)]: 13.91(100)(101), 7.23(17)(200,002), 5.39(22)(110,011), 4.64(33)(112,211,303), 3.952(42)(113,311,213), 3.290(35)(214,412,114,411), 2.823(39)(303,315) and 2.753(15)(513,115,121,511). The structure of tapiaite (R1 = 5.37% for 1733 Fo > 4σF) contains Al(AsO4)(OH)2 chains of octahedra and tetrahedra that are topologically identical to the chain in the structure of linarite. CaO8 polyhedra condense to the chains, forming columns, which are decorated with additional peripheral AsO4 tetrahedra. The CaO8 polyhedra in adjacent columns link to one another by corner-sharing to form thick layers parallel to {101} and the peripheral AsO4 tetrahedra link to CaO6 octahedra in the interlayer region, resulting in a framework structure.


2018 ◽  
Vol 82 (1) ◽  
pp. 133-144 ◽  
Author(s):  
Luiz A. D. Menezes Filho ◽  
Mario L. S. C. Chaves ◽  
Nikita V. Chukanov ◽  
Daniel Atencio ◽  
Ricardo Scholz ◽  
...  

ABSTRACTParisite-(La) (IMA2016-031), ideally CaLa2(CO3)3F2, occurs in a hydrothermal vein crosscutting a metarhyolite of the Rio dos Remédios Group, at the Mula mine, Tapera village, Novo Horizonte county, Bahia, Brazil, associated with hematite, rutile, almeidaite, fluocerite-(Ce), brockite, monazite-(La), rhabdophane-(La) and bastnäsite-(La). Parisite-(La) occurs as residual nuclei (up to 5 mm) in steep doubly-terminated pseudo-hexagonal pyramidal crystals (up to 8.2 cm). Parisite-(La) is transparent, yellow-green to white, with a white streak and displays a vitreous (when yellow-green) to dull (when white) lustre. Cleavage is distinct on pseudo-{001}; fracture is laminated, conchoidal, or uneven. The Mohs hardness is 4 to 5, and it is brittle. Calculated density is 4.273 g cm−3. Parisite-(La) is pseudo-uniaxial (+), ω = 1.670(2) and ε = 1.782(5) (589 nm). The empirical formula normalized on the basis of 11 (O + F) atoms per formula unit (apfu) is Ca0.98(La0.83Nd0.51Ce0.37Pr0.16Sm0.04Y0.03)Σ1.94C3.03O8.91F2.09. The IR spectrum confirms the absence of OH groups. Single-crystal X-ray studies gave the following results: monoclinic (pseudo-trigonal), space group: C2, Cm, or C2/m, a = 12.356(1) Å, b = 7.1368(7) Å, c = 28.299(3) Å, β = 98.342(4)°, V = 2469.1(4) Å3 and Z = 12. Parisite-(La) is the La-dominant analogue of parisite-(Ce).


2011 ◽  
Vol 75 (5) ◽  
pp. 2677-2686 ◽  
Author(s):  
L. Bindi ◽  
C. Carbone ◽  
R. Cabella ◽  
G. Lucchetti

AbstractBassoite, ideally SrV3O7·4H2O, is a new mineral from the Molinello manganese mine, Val Graveglia. eastern Liguria, northern Apennines, Italy. It occurs as black euhedral to subhedral grains up to 400 urn across, closely associated with rhodonite, quartz and braunite. Bassoite is opaque with a sub-metallic lustre and a black streak. It is brittle and neither fracture nor cleavage was observed; the Vickers micro-hardness (VHN100) is 150 kg/mm (range 142—165; corresponding to a Mohs hardness of 4—41/2). The calculated density is 2.940 g/cm3 (on the basis of the empirical formula and X-ray single-crystal data). Bassoite is weakly bireflectant and very weakly pleochroic from grey to a dark green. Internal reflections are absent. The mineral is anisotropic, without characteristic rotation tints. Reflectance percentages (Rmin and Rmax) for the four standard COM wavelengths are 18.5%, 19.0% (471.1 nm); 17.2%, 17.8% (548.3 nm); 16.8%, 17.5% (586.6 nm) and 16.2%, 16.8% (652.3 nm), respectively.Bassoite is monoclinic, space group P21/m, with unit-cell parameters: a = 5.313(3) Å, b = 10.495(3) Å, c = 8.568(4) Å, β = 91.14(5)°, V= 477.7(4) Å3, a:b:c = 0.506:1:0.816, and Z = 2. The crystal structure was refined to R1 = 0.0209 for 1148 reflections with Fo > 4σ(Fo) and it consists of layers of VO5 pyramids (with vanadium in the tetravalent state) pointing up and down alternately with Sr between the layers (in nine-fold coordination). The nine most intense X-ray powder-diffraction lines [d in Å (I/I0) (hkt)] are: 8.5663 (100) (001); 6.6363 (14) (011); 3.4399 (14) (1̄21); 3.4049 (17) (121); 2.8339 (15) (1̄22); 2.7949 (11) (122); 2.6550 (15) (200); 2.6237 (11) (040) and 1.8666 (15) (240). Electron microprobe analyses produce a chemical formula (Sr0.97Ca0.02Na0.01)V3.00O74H20, on the basis of 2(Sr+Ca+Na) = 1, taking the results of the structure refinement into account. The presence of water molecules was confirmed by micro-Raman spectroscopy. The name honours Riccardo Basso (b. 1947), full professor of Mineralogy and Crystallography at the University of Genova. The new mineral and mineral name have been approved by the Commission on New Minerals, Nomenclature and Classification, IMA (2011-028).


2013 ◽  
Vol 77 (7) ◽  
pp. 3039-3046 ◽  
Author(s):  
D. Topa ◽  
E. Makovicky ◽  
H. Tajedin ◽  
H. Putz ◽  
G. Zagler

AbstractBarikaite, ideally Pb10Ag3(Sb8As11)Σ19S40, is a new mineral species from the Barika Au-Ag deposit, Azarbaijan Province, western Iran. It was formed in fractures developed in silica bands situated in massive banded pyrite and baryte ores. These fractures house veinlets that contain a number of Ag-As-Sb-Pb-rich sulfosalts, tetrahedrite-tennantite, realgar, pyrite and electrum. Barikaite appears as inclusions in guettardite. The mineral is opaque, greyish black with a metallic lustre; it is brittle without any discernible cleavage. In reflected light barikaite is greyish white, pleochroism is distinct, white to dark grey. Internal reflections are absent. In crossed polars, anisotropism is distinct with rotation tints in shades of grey. The reflectance data (%, in air) are: 37.0, 39.3 at 470 nm, 34.1, 36.9 at 546 nm, 33.1, 36.2 at 589 nm and 31.3, 34.1 at 650 nm. The Mohs hardness is 3–3½, microhardness VHN50 exhibits the range 192 – 212, with a mean value of 200 kg mm–2. The average results of five electron-microprobe analyses in a grain are (in wt.%): Pb 35.77(33), Ag 5.8(1), Tl 0.15(08), Sb 18.33(09), As 15.64(16), S 24.00(15), total 99.69(10) wt.%, corresponding to Pb9.31Ag2.90Tl0.04(Sb8.12As11.26)Σ19.36S40.37 (on the basis of 32Me + 40S = 72 a.p.f.u.). The simplified formula, Pb10Ag3(Sb8As11)Σ19S40, is in accordance with the results of a crystal-structure analysis, and requires Pb 37.89, Ag 5.91, Sb 17.79, As 15.05 and S 23.42 (wt.%). The variation of chemical composition is minor, the empirical formula ranging from Pb10.39Ag2.32Tl0.02Sb7.52As11.27S40.49 to Pb9.24Ag2.93Tl0.04Sb8.13As11.35S40.31. Barikaite has monoclinic symmetry, space group P21/n and unit-cell parameters a 8.5325(7) Å, b 8.0749(7) Å, c 24.828(2) Å, and b 99.077(6)o, Z = 1. Calculated density for the empirical formula is 5.34 (g cm–3). The strongest eight lines in the (calculated) powder-diffraction pattern [d in Å(I)(hkl)] are: 3.835(63)(022), 3.646(100)(016), 3.441(60)(212), 3.408(62)(14), 2.972(66)(16), 2.769(91)(222), 2.752(78)(24) and 2.133(54)(402). Barikaite is the N = 4 member of the sartorite homologous series with a near-equal role of As and Sb, which have an ordered distribution pattern in the structure. It is a close homeotype of rathite and more distantly related to dufrénoysite (both distinct, pure arsenian N = 4 members) and it completes the spectrum of Sb-rich members of the sartorite homologous series. The new mineral and its name have been approved by the IMA-CNMNC (IMA 2012-055).


2013 ◽  
Vol 77 (8) ◽  
pp. 3055-3066 ◽  
Author(s):  
J. Plášil ◽  
J. Hloušek ◽  
R. Škoda ◽  
M. Novák ◽  
J. Sejkora ◽  
...  

AbstractVysokýite, U4+[(AsO2(OH)2]4(H2O)4 (IMA 2012–067), was found growing on an altered surface of massive native As in the Geschieber vein, Jáchymov ore district, Western Bohemia, Czech Republic. The new mineral was found in association with běhounekite, štěpite, kaatialaite, arsenolite, claudetite and gypsum. It forms extremely fibrous light-green crystals up to 8 mm long. Crystals have an alabaster lustre and a greenish-white to greyish streak. Vysokýite is brittle with uneven fracture and perfect cleavage along (100) and (001); the Mohs hardness is ∼2. A density of 3.393 g/cm3 was calculated using the empirical formula and unit-cell parameters obtained from a single-crystal diffraction experiment. Vysokýite is non-fluorescent under short or long wavelength UV radiation. It is colourless under the microscope, measured refractive indices are α' = 1.617(3), γ' = 1.654(3); the estimated optical orientation is α' ∼X, γ' ∼Z. The average of five spot wavelength dispersive spectroscopy (WDS) analyses is 29.44 UO2, 1.03 SiO2, 48.95 As2O5, 0.12 SO3, 15.88 H2O (calc.), total 95.42 wt.%. The empirical formula of vysokýite (based on 20 O a.p.f.u.) is U1.00[AsO2(OH)2]3.90(SiO4)0.16 (SO4)0.01·4H2O. The As–O–H and O–H vibrations dominate in the Raman spectrum. Vysokýite is triclinic, space group P, with a = 10.749(2), b = 5.044(3), c = 19.1778(7) Å, α = 89.872(15)°, β = 121.534(15)°, γ = 76.508(15)°, and V = 852.1(6) Å3, Z = 2 and Dcalc = 3.34 g·cm–3. The strongest diffraction peaks in the X-ray powder diffraction pattern are [dobs in Å (Irel.)(hkl)]: 8.872(100)(100), 8.067(50)(002), 6.399(7)(10), 4.773(6)(10), 3.411(10)(30), 3.197(18)(31). The crystal structure of vysokýite was solved from single-crystal X-ray diffraction data by the charge-flipping method and refined to R1 = 0.0595 based on 2718 unique observed reflection, and to wR2 = 0.1160 for all 4173 unique reflections. The structure of vysokýite consists of UO8 square antiprisms sharing all of their vertices with 8 As-tetrahedra to form infinite chains parallel to [010]. These chains are linked by hydrogen bonds involving terminal (OH) groups of the double-protonated As-tetrahedra and molecules of H2O located between the chains. The new mineral is named in honour of Arnošt Vysoký (1823–1872), the former chief of the Jáchymov mines and smelters, chemist and metallurgist.


Sign in / Sign up

Export Citation Format

Share Document