interlayer region
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 14)

H-INDEX

14
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Dawei sun ◽  
Yan Zheng ◽  
Jianhua Yan ◽  
Yali Wang ◽  
Jianfeng Wang ◽  
...  

Abstract The application of cement based materials in engineering requires the understanding of their characteristics and subsequent deformation and fracture process of C-S-H gel in service. In this work, three types of amine molecules including TEPA, PAM and TEA were intercalated unsaturatedly into C–S–H gel successfully. Systematical analysis was performed on the structures and properties on both C–S–H gel and corresponding amine molecules / C–S–H gel. It was found that unsaturated intercalation of amine molecules into C–S–H gel plays a key role in the geometry and therein density of nanocomposites. Subsequently, radial distribution function (RDF), time correlated function (TCF) and mean square displacement (MSD) were applied to characterize the structure and dynamic information of the as-generated nanocomposites, demonstrating the occurance of interaction between amine molecules with Ca–Si layer and acceleration of water diffusion by unsaturated intercalation of amine molecules into the interlayer region in C–S–H gel. Finally, deformation and fracture process of C–S–H gel and amine molecules / C–S–H gel under uniaxial tensile loads were displayed by molecular dynamics simulation. It was indicated that Young’s modulus of nanocomposites demonstrates a strain softening nature, indicating a visco-elastic behavior. The breakage of Ca–O bonds and hydrogen bonds dominates the fracture of C–S–H gel. Weak interaction for TEPA / C–S–H gel or TEA / C–S–H gel leads to a decreased tensile strength. Local stress concentration in other interlayer region governs the deformation and fracture process in spite of the formation of strong interaction between double bonded polar oxygen atoms in PAM molecules and Ca atoms in C–S–H gel.


2021 ◽  
Vol 7 (3) ◽  
pp. 59
Author(s):  
Torben Schlebrowski ◽  
Melanie Fritz ◽  
Lucas Beucher ◽  
Yongxin Wang ◽  
Stefan Wehner ◽  
...  

Polycarbonate (PC) is a material that is used in many areas: automotive, aerospace engineering and data storage industries. Its hardness is of particular importance, but some applications are affected by its low wettability or scratch susceptibility. This can be changed either by blending with other polymers, or by surface modifications, such as the application of an amorphous hydrogenated carbon layer (a-C:H). In this study, individual a-C:H layers of different thicknesses (10–2000 nm) were deposited on PC by RF PECVD. Both the layer morphology with AFM and SEM and the bonding states of the carbon on the surface with synchrotron-assisted XPS and NEXAFS were studied. The aim was to investigate the coatability of PC and the stability of the a-C:H. Special attention was paid to the interlayer region from 0 to 100 nm, since this is responsible for the layer to base material bonding, and to the zone of dehydrogenation (from about 1000 nm), since this changes the surface composition considerably. For PC, the interlayer was relatively small with a thickness of only 20 nm. Additionally, a correlation was found between the evolving grain structure and the development of the C‒H peak according to NEXAFS C K-edge measurements.


2021 ◽  
Vol 11 (15) ◽  
pp. 6801
Author(s):  
Polina Viktorovna Polyakova ◽  
Julia Alexandrovna Pukhacheva ◽  
Stepan Aleksandrovich Shcherbinin ◽  
Julia Aidarovna Baimova ◽  
Radik Rafikovich Mulyukov

The aluminum–magnesium (Al–Mg) composite materials possess a large potential value in practical application due to their excellent properties. Molecular dynamics with the embedded atom method potentials is applied to study Al–Mg interface bonding during deformation-temperature treatment. The study of fabrication techniques to obtain composites with improved mechanical properties, and dynamics and kinetics of atom mixture are of high importance. The loading scheme used in the present work is the simplification of the scenario, experimentally observed previously to obtain Al–Cu and Al–Nb composites. It is shown that shear strain has a crucial role in the mixture process. The results indicated that the symmetrical atomic movement occurred in the Mg–Al interface during deformation. Tensile tests showed that fracture occurred in the Mg part of the final composite sample, which means that the interlayer region where the mixing of Mg, and Al atoms observed is much stronger than the pure Mg part.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Carolina Gil-Lozano ◽  
Alberto G. Fairén ◽  
Victoria Muñoz-Iglesias ◽  
Maite Fernández-Sampedro ◽  
Olga Prieto-Ballesteros ◽  
...  

Abstract The presence of organic matter in lacustrine mudstone sediments at Gale crater was revealed by the Mars Science Laboratory Curiosity rover, which also identified smectite clay minerals. Analogue experiments on phyllosilicates formed under low temperature aqueous conditons have illustrated that these are excellent reservoirs to host organic compounds against the harsh surface conditions of Mars. Here, we evaluate whether the capacity of smectites to preserve organic compounds can be influenced by a short exposure to different diagenetic fluids. We analyzed the stability of glycine embedded within nontronite samples previously exposed to either acidic or alkaline fluids (hereafter referred to as “treated nontronites”) under Mars-like surface conditions. Analyses performed using multiple techniques showed higher photodegradation of glycine in the acid-treated nontronite, triggered by decarboxylation and deamination processes. In constrast, our experiments showed that glycine molecules were preferably incorporated by ion exchange in the interlayer region of the alkali-treated nontronite, conferring them a better protection against the external conditions. Our results demonstrate that smectite previously exposed to fluids with different pH values influences how glycine is adsorbed into their interlayer regions, affecting their potential for preservation of organic compounds under contemporary Mars surface conditions.


2020 ◽  
Vol 20 (9) ◽  
pp. 5555-5562
Author(s):  
Jia-Chao Shen ◽  
Hong-Yan Zeng ◽  
Bi Foua Claude Alain Gohi ◽  
Chao-Rong Chen

The ternary mesoporous MgFeAl oxide (MgFeAlO) material was designed and prepared using glucose as a soft template by calcination of its MgFeAl hydrotalcite precursor. The MgFeAlO showed significantly better Cr(VI) adsorption performance than binary MgAlO. The effect of Fe3+ on Cr(VI) removal in simulated wastewater was studied by researching the microstructure, adsorption properties and mechanism of the material. The results showed that the addition of Fe3+ affected the microstructure of MgAlO, where the partial substitution of Al3+ by Fe3+ into the host layers resulted in an increase in the interlayer region and specific area (SBET) as well as an enlargement in mesoporous feature into the MgFeAlO. The Cr(VI) adsorption process, taking place by the reconstruction of the MgFeAlO oxide with water (memory effect) companying with the intercalation of CrO2−4 anions, was much more efficient than that occurring in the binary MgAlO. MgFeAlO’s adsorption of Cr(VI) follows the pseudo-second-order model and it is controlled by intra particle diffusion. The adsorption isotherm was better fitted by the Langmuir model, suggesting that the Cr(VI) adsorption was a monolayer adsorption onto the homogeneous support surface. All thermodynamic and kinetic calculations suggested that the Cr(VI) adsorption process on the MgFeAlO was of chemisorption nature, in which activation energy (Ea) and enthalpy change (ΔH) were 30.01 and 193.58 kJ·mol−1, respectively.


Author(s):  
Guoqing Geng ◽  
Zhenguo Shi ◽  
Andreas Leemann ◽  
Konstantin Glazyrin ◽  
Annette Kleppe ◽  
...  

Alkali-silica reaction (ASR) causes severe degradation of concrete. The mechanical property of the ASR product is fundamental to the multiscale modeling of concrete behavior over the long term. Despite years of study, there is a lack of consensus regarding the structure and elastic modulus of the ASR product. Here, ASR products from both degraded field infrastructures and laboratory synthesis were investigated using high-pressure X-ray diffraction. The results unveiled the multiphase and metastable nature of ASR products from the field. The dominant phase undergoes permanent phase change via collapsing of the interlayer region and in-planar glide of the main layer, under pressure >2 GPa. The bulk moduli of the low- and high-pressure polymorphs are 27±3 and 46±3 GPa, respectively. The laboratory-synthesized sample and the minor phase in the field samples undergo no changes of phase during compression. Their bulk moduli are 35±2 and 76±4 GPa, respectively. The results provide the first atomistic-scale measurement of the mechanical property of crystalline ASR products.


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 825
Author(s):  
Alcântara ◽  
Darder ◽  
Aranda ◽  
Ruiz-Hitzky

This work constitutes a basic study about the first exploration on the preparation of biohybrids based on the corn protein zein and layered metal hydroxides, such as layered double hydroxides (LDH) and layered single hydroxides (LSHs). For this purpose, MgAl layered double hydroxide and the Co2(OH)3 layered single hydroxide were selected as hosts, and various synthetic approaches were explored to achieve the formation of the zein-layered hydroxide biohybrids, profiting from the presence of negatively charged groups in zein in basic medium. Zein-based layered hydroxide biohybrids were characterized by diverse physicochemical techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis/differential thermal analysis (TG/DTA), solid state 13C cross-polarization magical angle spinning nuclear magnetic resonance (CP-MAS NMR), field emission-scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), etc., which suggest that the different synthesis procedures employed and the anion located in the interlayer region of the inorganic host material seem to have a strong influence on the final features of the biohybrids, resulting in mixed, single intercalated, or highly exfoliated intercalated phases. Thus, the resulting biohybrids based on zein and layered hydroxides could have interest in applications in biomedicine, biosensing, materials for electronic devices, catalysis, and photocatalysis.


2020 ◽  
Vol 49 (12) ◽  
pp. 3796-3808
Author(s):  
Jay C. Amicangelo ◽  
Willem R. Leenstra

Zirconium phosph(on)ates containing naphthalene moieties have been synthesized and in one compound, conformational variations with 2-methylnaphthyl groups result in distinct resonances in the solid state 31P NMR spectrum.


Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1430
Author(s):  
Ping Wu ◽  
Peng Li ◽  
Min Huang

To suppress the volume expansion and thus improve the performance of antimonene as a promising anode for lithium-ion batteries, we have systematically studied the stability, structural and electronic properties of the antimonene capped with graphene (G/Sb heterostructure) upon the intercalation and diffusion of Li atoms by first-principles calculations based on van der Waals (vdW) corrected density functional theory. G/Sb exhibits higher Young’s modulus (armchair: 145.20, zigzag: 144.36 N m−1) and improved electrical conductivity (bandgap of 0.03 eV) compared with those of antimonene. Li favors incorporating into the interlayer region of G/Sb rather than the outside surfaces of graphene and antimonene of G/Sb heterostructure, which is caused by the synergistic effect. The in-plane lattice constants of G/Sb heterostructure expand only around 4.5%, and the interlayer distance of G/Sb increases slightly (0.22 Å) at the case of fully lithiation, which indicates that the capping of graphene on antimonene can effectively suppress the volumetric expansion during the charging process. Additionally, the hybrid G/Sb heterostructure has little influence on the migration behaviors of Li on the outside of graphene and Sb surfaces compared with their free-standing monolayers. However, the migration energy barrier for Li diffusion in the interlayer region (about 0.59 eV) is significantly affected by the geometry structure, which can be reduced to 0.34 eV simply by increasing the interlayer distance. The higher theoretical specific capacity (369.03 mAh g−1 vs 208 mAh g−1 for antimonene monolayer) and suitable open circuit voltage (from 0.11 V to 0.89 V) of G/Sb heterostructure are beneficial for anode materials of lithium-ion batteries. The above results reveal that G/Sb heterostructure may be an ideal candidate of anode for high recycling–rate and portable lithium-ion batteries.


Sign in / Sign up

Export Citation Format

Share Document