Hylbrownite, Na3MgP3O10·12H2O, a new triphosphate mineral from the Dome Rock Mine, South Australia: description and crystal structure

2013 ◽  
Vol 77 (3) ◽  
pp. 385-398 ◽  
Author(s):  
P. Elliott ◽  
J. Brugger ◽  
T. Caradoc-Davies ◽  
A. Pring

AbstractHylbrownite, ideally Na3MgP3O10·12H2O, the second known triphosphate mineral, is a new mineral species from the Dome Rock mine, Boolcoomatta Reserve, Olary Province, South Australia, Australia. The mineral forms aggregates and sprays of crystals up to 0.5 mm across with individual crystals up to 0.12 mm in length and 0.02 mm in width. Crystals are thin prismatic to acicular in habit and are elongate along [001]. Forms observed are {010}, {100}, {001}, {210} and {201}. Crystals are colourless to white, possess a white streak, are transparent, brittle, have a vitreous lustre and are nonfluorescent. The measured density is 1.81(4) g cm−3; Mohs' hardness was not determined. Cleavage is good parallel to {001} and to {100} and the fracture is uneven. Hylbrownite crystals are nonpleochroic, biaxial (−), with α = 1.390(4), β = 1.421(4), γ = 1.446(4) and 2Vcalc. = 82.2°. Hylbrownite is monoclinic, space group P21/n, with a = 14.722(3), b = 9.240(2), c = 15.052(3) Å, β = 90.01(3)°, V = 2047.5(7) Å3, (single-crystal data) and Z = 4. The strongest lines in the powder X-ray diffraction pattern are [d (Å)(I)(hkl)]: 10.530(60)(10,101), 7.357(80)(200), 6.951(100)(11, 111), 4.754(35)(10, 103), 3.934(40)(022), 3.510(45)(30, 303), 3.336(35)(41, 411). Chemical analysis by electron microprobe gave Na2O 16.08, MgO 7.08, CaO 0.43, P2O5 37.60, H2Ocalc 38.45, total 99.64 wt.%. The empirical formula, calculated on the basis of 22 oxygen atoms is Na2.93Mg0.99Ca0.04P2.99O9.97·12.03H2O. The crystal structure was solved from single-crystal X-ray diffraction data using synchrotron radiation (T = 123 K) and refined to R1 = 4.50% on the basis of 2417 observed reflections with F0 > 4 σ(F0). [Mg(H2O)3P3O10] clusters link in the b direction to Naφ6 octahedra, by face and corner sharing. Edge sharing Naφ6 Octahedra and Naφ7 polyhedra form Na2O9 groups which link via corners to form chains along the b direction. Chains link to [Mg(H2O)3P3O10] clusters via corner-sharing in the c direction and form a thick sheet parallel to (100). Sheets are linked in the a direction via hydrogen bonds.

2014 ◽  
Vol 78 (3) ◽  
pp. 497-505 ◽  
Author(s):  
A. V. Kasatkin ◽  
J. Plášil ◽  
J. Marty ◽  
A. A. Agakhanov ◽  
D. I. Belakovskiy ◽  
...  

AbstractNestolaite (IMA 2013-074), CaSeO3·H2O, is a new mineral species from the Little Eva mine, Grand County, Utah, USA. It is named in honour of the prominent Italian mineralogist and crystallographer Fabrizio Nestola. The new mineral was found on sandstone matrix as rounded aggregates up to 2 mm across and up to 0.05 μm thick consisting of tightly intergrown oblique-angled, flattened to acicular crystals up to 30 μm long and up to 7 μm (very rarely up to 15 μm) thick. Nestolaite associates with cobaltomenite, gypsum, metarossite, orschallite and rossite. The new mineral is light violet and transparent with a white streak and vitreous lustre. The Mohs hardness is 2½. Nestolaite is brittle, has uneven fracture and perfect cleavage on {100}. The measured and calculated densities are Dmeas. = 3.18(2) g/cm3 and Dcalc. = 3.163 g/cm3. Optically, nestolaite is biaxial positive. The refractive indices are α = 1.642(3), β = 1.656(3), γ = 1.722(6). The measured 2V is 55(5)° and the calculated 2V is 51°. In transmitted light nestolaite is colourless. It does not show pleochroism but has strong pseudoabsorption caused by high birefringence. The chemical composition of nestolaite (wt.%, electronmicroprobe data) is: CaO 28.97, SeO2 61.14, H2O (calc.) 9.75, total 99.86. The empirical formula calculated on the basis of 4 O a.p.f.u. (atoms per formula unit) is Ca0.96Se1.02O3·H2O. The Raman spectrum is dominated by the Se–O stretching and O–Se–O bending vibrations of the pyramidal SeO3 groups and O–H stretching modes of the H2O molecules. The mineral is monoclinic, space group P21/c, with a = 7.6502(9), b = 6.7473(10), c = 7.9358(13) Å, β = 108.542 (12)°, V = 388.37(10) Å3 and Z = 4. The eight strongest powder X-ray diffraction lines are [dobs in Å(hkl) (Irel)]: 7.277 (100)(100), 4.949 (110)(37), 3.767 (002)(29), 3.630 (200)(58), 3.371 (020)(24), 3.163 (02)(74), 2.9783 (21)(74) and 2.7231 (112)(31). The crystal structure of nestolaite was determined by means of the Rietveld refinement from the powder data to Rwp = 0.019. Nestolaite possesses a layered structure consisting of CaΦ–SeO3 sheets, composed of edge-sharing polyhedra. Adjacent sheets are held by H bonds emanating from the single (H2O) group within the sheets. The nestolaite structure is topologically unique.


2015 ◽  
Vol 79 (3) ◽  
pp. 613-623 ◽  
Author(s):  
Nikita V. Chukanov ◽  
Sergey N. Britvin ◽  
Gerhard Möhn ◽  
Igor V. Pekov ◽  
Natalia V. Zubkova ◽  
...  

AbstractThe new mineral shilovite, the first natural tetrammine copper complex, was found in a guano deposit located on the Pabellón de Pica Mountain, near Chanabaya, Iquique Province, Tarapacá Region, Chile. It is associated with halite, ammineite, atacamite (a product of ammineite alteration) and thénardite. The gabbro host rock consists of amphibole, plagioclase and minor clinochlore, and contains accessory chalcopyrite. The latter is considered the source of Cu for shilovite. The new mineral occurs as deep violet blue, imperfect, thick tabular to equant crystals up to 0.15 mm in size included in massive halite. The mineral is sectile. Its Mohs hardness is 2. Dcalc is 1.92 g cm–3. The infrared spectrum shows the presence of NH3 molecules and NO3– anions. Shilovite is optically biaxial (+), α = 1.527(2), β = 1.545(5), γ = 1.610(2). The chemical composition (electron-microprobe data, H calculated from ideal formula, wt.%) is Cu 26.04, Fe 0.31, N 30.8, O 35.95, H 4.74, total 100.69. The empirical formula is H12.56(Cu1.09Fe0.01)N5.87O6.00. The idealized formula is Cu(NH3)4(NO3)2. The crystal structure was solved and refined to R = 0.029 based upon 2705 unique reflections having F > 4σ(F). Shilovite is orthorhombic, space group Pnn2, a = 23.6585(9), b = 10.8238(4), c = 6.9054(3) Å, V = 1768.3(1) Å3, Z = 8. The strongest reflections of the powder X-ray diffraction pattern [d, Å (I,%) (hkl)] are: 5.931 (41) (400), 5.841 (100) (011), 5.208 (47) (410), 4.162 (88) (411), 4.005 (62) (420), 3.462 (50) (002), 3.207 (32) (031), 2.811 (40) (412).


2015 ◽  
Vol 79 (5) ◽  
pp. 1111-1121 ◽  
Author(s):  
Nikita V. Chukanov ◽  
Sergey M. Aksenov ◽  
Ramiza K. Rastsvetaeva ◽  
Konstantin A. Lyssenko ◽  
Dmitriy I. Belakovskiy ◽  
...  

AbstractThe new oxalate mineral antipinite is found in a guano deposit located on the Pabellón de Pica Mountain, Iquique Province, Tarapacá Region, Chile. Associated minerals are halite, salammoniac, chanabayaite, joanneumite and clays. Antipinite occurs as blue, imperfect, short prismatic crystals up to 0.1 mm × 0.1 mm × 0.15 mm in size, as well as their clusters and random aggregates. The mineral is brittle. Mohs hardness is 2; Dmeas = 2.53(3), Dcalc = 2.549 g cm–3. The infrared spectrum shows the presence of oxalate anions and the absence of absorptions associated with H2O molecules, C–H bonds, CO32–, NO3– and OH– ions. Antipinite is optically biaxial (+), α = 1.432(3), β = 1.530(1), γ = 1.698(5), 2Vmeas = 75(10)°, 2Vcalc = 82°. The chemical composition (electron-microprobe data, C measured by gas chromatography of products of ignition at 1200°C, wt.%) is Na2O 15.95, K2O 5.65, CuO 27.34, C2O3 48.64, total 99.58. The empirical formula is K0.96Na3.04Cu2.03(C2.00O4)4 and the idealized formula is KNa3Cu2(C2O4)4. The crystal structure was solved and refined to R = 0.033 based upon 4085 unique reflections with I > 2σ(I). Antipinite is triclinic, space group P1, a = 7.1574(5), b = 10.7099(8), c = 11.1320(8) Å, α = 113.093(1), β = 101.294(1), γ = 90.335 (1)°, V = 766.51(3) Å3, Z = 2. The strongest reflections of the powder X-ray diffraction pattern [d, Å (I,%) (hkl)] are 5.22 (40) (111), 3.47 (100) (032), 3.39 (80) (210), 3.01 (30) (033, 220), 2.543 (40) (122, 034, 104), 2.481 (30) (213), 2.315 (30) (143, 310), 1.629 (30) (146, 414, 243, 160).


2020 ◽  
Vol 58 (5) ◽  
pp. 587-596
Author(s):  
Anatoly V. Kasatkin ◽  
Emil Makovicky ◽  
Jakub Plášil ◽  
Radek Škoda ◽  
Atali A. Agakhanov ◽  
...  

ABSTRACT The new sulfosalt chukotkaite, ideally AgPb7Sb5S15, was discovered in the valley of the Levyi Vulvyveem river, Amguema river basin, Iultin District, Eastern Chukotka, Chukotka Autonomous Okrug, North-Eastern region, Russia. The new mineral forms anhedral grains up to 0.4 × 0.5 mm intergrown with pyrrhotite, sphalerite, galena, stannite, quartz, and Mn-Fe-bearing clinochlore. Other associated minerals include arsenopyrite, benavidesite, diaphorite, jamesonite, owyheeite, uchucchacuaite, cassiterite, and fluorapatite. Chukotkaite is lead-grey and has metallic luster and a grey streak. It is brittle and has an uneven fracture. Neither cleavage nor parting were observed. Mohs hardness is 2–2½. Dcalc. = 6.255 g/cm3. In reflected light, chukotkaite is white, moderately anisotropic with rotation tints varying from bluish-grey to brownish-grey. No pleochroism or internal reflections are observed. The chemical composition of chukotkaite is (wt.%; electron microprobe) Ag 3.83, Pb 53.67, Sb 24.30, S 18.46, total 100.26. The empirical formula based on the sum of all atoms = 28 pfu is Ag0.93Pb6.78Sb5.22S15.07. Chukotkaite is monoclinic, space group P21/c, a = 4.0575(3), b = 35.9502(11), c = 19.2215(19) Å, β = 90.525(8)°, V = 2803.7(4) Å3, and Z = 4. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 3.52 (100) (045), 3.38 (50) (055), 3.13 (50) (065), , 2.82 (25) (066), 1.91 (50) (0 1 10). The crystal structure of chukotkaite was refined from single-crystal X-ray diffraction data to R = 0.0712 for 3307 observed reflections with Iobs > 3σ(I). Chukotkaite belongs to the group of rod-based sulfosalts. The new mineral is named after the region of its type locality: Chukotka Autonomous Okrug, North-Eastern Region, Russia.


Minerals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 779 ◽  
Author(s):  
Cristian Biagioni ◽  
Luca Bindi ◽  
Anthony R. Kampf

The new mineral species magnanelliite, K3Fe3+2(SO4)4(OH)(H2O)2, was discovered in the Monte Arsiccio mine, Apuan Alps, Tuscany, Italy. It occurs as steeply terminated prisms, up to 0.5 mm in length, yellow to orange-yellow in color, with a vitreous luster. Streak is pale yellow, Mohs hardness is ca. 3, and cleavage is good on {010}, fair on {100}. The measured density is 2.82(3) g/cm3. Magnanelliite is optically biaxial (+), with α = 1.628(2), β = 1.637(2), γ = 1.665(2) (white light), 2Vmeas = 60(2)°, and 2Vcalc = 59.9°. It exhibits a strong dispersion, r > v. The optical orientation is Y = b, X ^ c ~ 25° in the obtuse angle β. It is pleochroic, with X = orange yellow, Y and Z = yellow. Magnanelliite is associated with alum-(K), giacovazzoite, gypsum, jarosite, krausite, melanterite, and scordariite. Electron microprobe analyses give (wt.%): SO3 47.82, TiO2 0.05, Al2O3 0.40, Fe2O3 25.21, MgO 0.07, Na2O 0.20, K2O 21.35, H2Ocalc 6.85, total 101.95. On the basis of 19 anions per formula unit, assuming the occurrence of one (OH)− and two H2O groups, the empirical chemical formula of magnanelliite is (K2.98Na0.04)Σ3.02(Fe3+2.08Al0.05Mg0.01)Σ2.14S3.93O16(OH)(H2O)2. The ideal end-member formula can be written as K3Fe3+2(SO4)4(OH)(H2O)2. Magnanelliite is monoclinic, space group C2/c, with a = 7.5491(3), b = 16.8652(6), c = 12.1574(4) Å, β = 94.064(1)°, V = 1543.95(10) Å3, Z = 4. Strongest diffraction lines of the observed X-ray powder pattern are [d(in Å), estimated visual intensity, hkl]: 6.9, medium, 021 and 110; 4.91, medium-weak, 022; 3.612, medium-weak, 1 ¯ 32, 023, and 1 ¯ 13; 3.085, strong, 202, 150, and 1 ¯ 33; 3.006, medium, 004, 1 ¯ 51, and 151; 2.704, medium, 152 and 2 ¯ 23; 2.597, medium-weak, 2 ¯ 42; 2.410, medium-weak, 153. The crystal structure of magnanelliite has been refined using X-ray single-crystal data to a final R1 = 0.025, on the basis of 2411 reflections with Fo > 4σ(Fo) and 144 refined parameters. The crystal structure is isotypic with that of alcaparrosaite, K3Ti4+Fe3+(SO)4O(H2O)2.


2020 ◽  
Vol 84 (5) ◽  
pp. 705-711 ◽  
Author(s):  
Nikita V. Chukanov ◽  
Gerhard Möhn ◽  
Igor V. Pekov ◽  
Natalia V. Zubkova ◽  
Dmitry A. Ksenofontov ◽  
...  

AbstractThe new leucophosphite-group mineral ammoniotinsleyite is found in a guano deposit located on the Pabellón de Pica Mountain, Iquique Province, Tarapacá Region, Chile. Associated minerals are halite, gypsum, salammoniac and clay minerals. Ammoniotinsleyite occurs as pink to pale violet globular aggregates up to 3 mm across with individual single crystals ~10–15 μm. The mineral is brittle. Its Mohs hardness is 4. Dmeas. = 2.42(2) g cm–3 and Dcalc. = 2.451 g cm–3. The IR spectrum shows the presence of NH4+ and PO43– groups and H2O molecules. Ammoniotinsleyite is optically biaxial (+), α = 1.557(2), β = 1.559 (calc.), γ = 1.563(2) (λ = 589 nm); and 2Vmeas. = 75(10)°. The chemical composition (K, Mg, Ca, Al, Fe and P from electron-microprobe data; H, C and N measured by gas chromatography on products of ignition at 1200°C; wt.%) is: (NH4)2O 7.25, K2O 1.50, MgO 0.42, CaO 0.34, Al2O3 29.91, Fe2O3 2.36, P2O5 43.97, H2O 14.89, CO2 below detection limit, total 100.64. The empirical formula is [(NH4)0.88K0.10Ca0.02)]Σ1.00(Al1.86Fe3+0.09Mg0.03)Σ1.98(PO4)1.96(OH)1.05⋅2.11H2O. The idealised formula is (NH4)2Al2(PO4)2(OH)⋅2H2O. The crystal structure of ammoniotinsleyite was refined based on powder X-ray diffraction data, using the Rietveld method. The final agreement factors are: Rp = 0.0071, Rwp = 0.0093 and Robs = 0.0167. The new mineral is isostructural with tinsleyite, spheniscidite and leucophosphite. It is monoclinic, space group P21/n, a = 9.5871(1) Å, b = 9.6089(1) Å, c = 9.6467(2) Å, β = 103.4461(8)°, V = 864.31(2) Å3 and Z = 4. The strongest reflections of the powder X-ray diffraction pattern [d,Å(I,%)(hkl)] are: 7.56(23)($\bar{1}$01), 6.71(79)(011, 110), 5.947(100)(101, $\bar{1}$11), 4.676(36)(002, 200), 3.032(28)($\bar{1}$13, 031, 130), 2.958(25)($\bar{2}$22, 310, $\bar{1}$31) and 2.635(29)($\bar{2}$31).


2018 ◽  
Vol 83 (03) ◽  
pp. 427-433 ◽  
Author(s):  
Peter Elliott

AbstractMiddlebackite is a new supergene mineral formed in the upper levels of the Iron Monarch quarry, South Australia. It occurs as aggregates of blue, prismatic crystals up to 0.3 mm across comprising individual crystals up to 0.05 mm in length associated with atacamite and mottramite. Crystals are translucent with a vitreous lustre and have a pale blue streak. Middlebackite is brittle with one perfect cleavage and uneven fracture. Mohs hardness is ~2. The calculated density is 3.64 g cm–3. Crystals are biaxial (+) with α = 1.663(4), β = 1.748(4) and γ = 1.861(4) (measured in white light). The calculated 2V is 86.7°. Pleochroism isX= colourless,Y= very pale blue andZ= dark sky blue;Z>Y>X. The empirical formula unit, based on six oxygen atoms per formula unit is Cu2.00(C2O4)Cl0.02(OH)1.98. Middlebackite is monoclinic, space groupP21/c witha= 7.2597(15),b= 5.7145(11),c= 5.6624(11) Å, β = 104.20(3)°,V= 227.73(8) Å3andZ= 2. The five strongest lines in the powder X-ray diffraction pattern are [d(Å), (I), (hkl)]: 7.070 (16) (100), 3.739 (100) (11$\bar{1}$), 2.860 (18) (020), 2.481 (12) (12$\bar{1}$) and 2.350 (9) (300). The crystal structure was refined from synchrotron single-crystal X-ray diffraction data toR1= 0.0341 for 596 observed reflections withF0> 4σ(F0). The structure is based on sheets of edge- and corner-sharing octahedra parallel to thebcplane. Sheets link in theadirection via oxalate anions.


2018 ◽  
Vol 83 (03) ◽  
pp. 393-400
Author(s):  
Anna Vymazalová ◽  
Kari Kojonen ◽  
František Laufek ◽  
Bo Johanson ◽  
Chris J. Stanley ◽  
...  

AbstractPampaloite, AuSbTe, is a new mineral discovered in the Pampalo gold mine, 65 km east of Joensuu, Finland. It forms anhedral grains (up to ~20 μm) intergrown with gold, frohbergite and altaite. Pampaloite is brittle and has a metallic lustre. Values of VHN25 lie between 245 and 295 kg/mm2, with a mean value of 276 kg/mm2, corresponding to a Mohs hardness of ~4–5 (measured on synthetic material). In plane-polarised light, pampaloite is white with medium to strong bireflectance, weak reflectance pleochroism from slightly pinkish brown to slightly bluish white (only visible in grains of synthetic material containing multiple orientations), and strong anisotropy, with blue to light brown rotation tints; it exhibits no internal reflections. Reflectance values of pampaloite in air (R1, R2 in %) are: 60.0, 62.5 at 470 nm, 62.5, 64.8 at 546 nm, 63.2, 65.6 at 589 nm and 63.7, 66.0 at 650 nm. Ten electron-microprobe analyses of natural pampaloite give an average composition: Au 44.13, Sb 27.44 and Te 28.74, total 100.31 wt.%, corresponding to the empirical formula Au1.00Sb1.00Te1.00 based on 3 atoms; the average of eleven analyses on synthetic pampaloite is: Au 44.03, Sb 27.26, and Te 29.08, total 100.38 wt.%, corresponding to Au0.99Sb1.00Te1.01. The density, calculated on the basis of the empirical formula, is 9.33 g/cm3.The mineral is monoclinic, space group C2/c, with a = 11.947(3), b = 4.481(1) Å, c = 12.335(3) Å, β = 105.83(2)°, V = 635.3(3) Å3 and Z = 8. The crystal structure was solved and refined from the single-crystal X-ray-diffraction data of synthetic AuSbTe. The pampaloite crystal structure can be considered as a monoclinic derivative of the CdI2 structure composed of [AuTe3Sb3] octahedra. The strongest lines in the powder X-ray diffraction pattern of synthetic pampaloite [d in Å (I) (hkl)] are: 4.846(24)($\bar{2}$02), 3.825(18)(111), 2.978(100)($\bar{3}$11), 2.968(50)(004), 2.242(25)(020), 2.144(55)(313), 2.063(33)($\bar{3}$15) and 1.789(18)(024).


2020 ◽  
Vol 58 (5) ◽  
pp. 549-562
Author(s):  
Anatoly V. Kasatkin ◽  
Fabrizio Nestola ◽  
Radek Škoda ◽  
Nikita V. Chukanov ◽  
Atali A. Agakhanov ◽  
...  

ABSTRACT Hingganite-(Nd), ideally Nd2□Be2Si2O8(OH)2, is a new gadolinite group, gadolinite supergroup mineral discovered at Zagi Mountain, near Kafoor Dheri, about 4 km S of Warsak and 30 km NW of Peshawar, Khyber Pakhtunkhwa Province, Pakistan. The new mineral forms zones measuring up to 1 × 1 mm2 in loose prismatic crystals up to 0.7 cm long, where it is intergrown with hingganite-(Y). Other associated minerals include aegirine, microcline, fergusonite-(Y), and zircon. Hingganite-(Nd) is dark greenish-brown, transparent, has vitreous luster and a white streak. It is brittle and has a conchoidal fracture. No cleavage or parting are observed. Mohs hardness is 5½–6. Dcalc. = 4.690 g/cm3. Hingganite-(Nd) is non-pleochroic, optically biaxial (+), α = 1.746(5), β = 1.766(5), γ = 1.792(6) (589 nm). 2Vmeas. = 80(7)°; 2Vcalc. = 84°. Dispersion of optical axes was not observed. The average chemical composition of hingganite-(Nd) is as follows (wt.%; electron microprobe, BeO, B2O3, and Lu2O3 content measured by LA-ICP-MS; H2O calculated by stoichiometry): BeO 9.64, CaO 0.45, MnO 0.10, FeO 3.03, B2O3 0.42, Y2O3 8.75, La2O3 1.63, Ce2O3 12.89, Pr2O3 3.09, Nd2O3 16.90, Sm2O3 5.97, Eu2O3 1.08, Gd2O3 5.15, Tb2O3 0.50, Dy2O3 2.50, Ho2O3 0.33, Er2O3 0.84, Tm2O3 0.10, Yb2O3 0.44, Lu2O3 0.04, ThO2 0.13, SiO2 23.55, H2O 2.72, total 100.25. The empirical formula calculated on the basis of 2 Si apfu is (Nd0.513Ce0.401Y0.395Sm0.175Gd0.145Pr0.096Dy0.068La0.051Ca0.041Eu0.031Er0.022Tb0.014Yb0.011Ho0.009Tm0.003Th0.003Lu0.001)Σ1.979(□0.778Fe2+0.215Mn0.007)Σ1.000(Be1.967B0.062)Σ2.029Si2O8.46(OH)1.54. Hingganite-(Nd) is monoclinic, space group P21/c with a = 4.77193(15), b = 7.6422(2), c = 9.9299(2) Å, β = 89.851(2)°, V = 362.123(14) Å3, and Z = 2. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 6.105 (95) (011), 4.959 (56) (002), 4.773 (100) (100), 3.462 (58) (102), 3.122 , 3.028 (61) (013), 2.864 (87) (121), 2.573 (89) (113). The crystal structure of hingganite-(Nd) was refined from single-crystal X-ray diffraction data to R = 0.034 for 2007 unique reflections with I > 2σ(I). The new mineral is named as an analogue of hingganite-(Y), hingganite-(Yb), and hingganite-(Ce), but with Nd dominant among the rare earth elements.


2004 ◽  
Vol 68 (5) ◽  
pp. 757-767 ◽  
Author(s):  
T. Mihajlović ◽  
H. Effenberger

AbstractHydrothermal synthesis produced the new compound SrCo2(AsO4)(AsO3OH)(OH)(H2O). The compound belongs to the tsumcorite group (natural and synthetic compounds with the general formula M(1)M(2)2(XO4)2(H2O,OH)2; M(1)1+,2+,3+ = Na, K, Rb, Ag, NH4, Ca, Pb, Bi, Tl; M(2)2+,3+ = Al, Mn3+, Fe3+, Co, Ni, Cu, Zn; and X5+,6+ = P, As, V, S, Se, Mo). It represents (1) the first Sr member, (2) the until now unknown [7]-coordination for the M(1) position, (3) the first proof of (partially) protonated arsenate groups in this group of compounds, and (4) a new structure variant.The crystal structure of the title compound was determined using single-crystal X-ray diffraction data. The compound is monoclinic, space group P21/a, with a = 9.139(2), b = 12.829(3), c = 7.522(2) Å, β = 114.33(3)°, V = 803.6(3) Å3, Z = 4 [wR2 = 0.065 for 3530 unique reflections]. The hydrogen atoms were located experimentally.


Sign in / Sign up

Export Citation Format

Share Document