Aluminopyracmonite, (NH4)3Al(SO4)3, a new ammonium aluminium sulfate from La Fossa crater, Vulcano, Aeolian Islands, Italy

2013 ◽  
Vol 77 (4) ◽  
pp. 443-451 ◽  
Author(s):  
F. Demartin ◽  
C. Castellano ◽  
I. Campostrini

AbstractThe new mineral aluminopyracmonite, ideally (NH4)3Al(SO4)3, was found in a medium-temperature (∼250°C) intracrater active fumarole at La Fossa crater, Vulcano, Aeolian Islands, Sicily, Italy. It occurs on a pyroclastic breccia as colourless to white prismatic crystals up to 0.2 mm long, in association with adranosite, mascagnite, alunite and salammoniac. The mineral is identical to the synthetic compound (NH4)3Al(SO4)3. It is trigonal, space group: R (no. 148) with a = 15.0324(8), c = 8.8776(5) 5, V = 1737.3(2) Å3 and Z = 6. The six strongest reflections in the X-ray powder diffraction pattern are: [dobs in Å (I)(hkl)] 3.336(100)(131), 7.469(62)(1 1 0), 3.288(60)(122), 4.289(45)(31), 2.824(29)(51), 4.187(27) (012). The empirical formula based on 12 anions is [(NH4)2.89K0.10]Σ 2.99(Al1.18Fe0.01)Σ 1.19S2.91O12, and the simplified formula (NH4,K)3Al(SO4)3. The measured density is 2.12(1) g/cm3, calculated density 2.143 g/cm3. The mineral is uniaxial(–) with ω = 1.545(3) and ε = 1.532(3) (λ = 589 nm). Using single-crystal diffraction data, the structure was refined to a final R(F) = 0.0258 for 998 independent observed reflections [I > 2σ(I)]. In spite of having unitcell parameters comparable with those of pyracmonite, the two minerals are not isostructural; the difference is related to a disordered conformation of the sulfate anions about the two independent Al3+ ions in aluminopyracmonite.

2010 ◽  
Vol 74 (1) ◽  
pp. 141-145 ◽  
Author(s):  
F. Demartin ◽  
C. M. Gramaccioli ◽  
I. Campostrini

AbstractDemicheleite-(I), ideally BiSI, is the iodine-dominant analogue of demicheleite-(Br) and demicheleite-(Cl). It was found in an active medium-temperature intracrateric fumarole at La Fossa crater, Vulcano Island, Aeolian archipelago, Sicily, Italy. The mineral is the first bismuth sulphoiodide so far discovered in a wholly natural environment, and corresponds to the already known synthetic compound. It occurs as acicular to stout, translucent crystals up to 0.25 mm long in an altered pyroclastic breccia, together with demicheleite-(Br), bismoclite, bismuthinite, godovikovite, panichiite, aiolosite, brontesite, adranosite and other new phases under study. The colour is dark red to black, the lustre submetallic. The unit cell is orthorhombic, space group Pnam, with a = 8.4501(7) Å, b = 10.1470(9) Å , c = 4.1389(4) Å , V = 354.88(4) Å3, and Z = 4. The crystal habit is prismatic, with the main forms {110} and {111} inferred from analogy with demicheleite-(Br). Twinning was not observed. The strongest 6 lines in the X-ray powder diffraction pattern [dobs.(Å) (I/I0) (hkl)] are: 6.490 (100) (110); 4.346 (94) (120); 3.896 (90) (210); 2.709 (60) (310); 2.161 (38) (330); 3.243 (22) (220). The chemical analysis obtained by WDS electron microprobe gave: Bi 58.32, S 9.43, I 23.69, Br 5.66, Cl 1.01, totalling 98.11 wt.%, corresponding to an empirical formula (based on 3 a.p.f.u.) of: Bi0.97S1.03(I0.65Br0.25Cl0.10)Σ1.00. The unit-cell data are close to those of the synthetic compound, whose crystal structure is already known. The calculated density is 6.411 g cm–3.


2014 ◽  
Vol 78 (7) ◽  
pp. 1629-1645 ◽  
Author(s):  
Anna Garavelli ◽  
Daniela Pinto ◽  
Donatella Mitolo ◽  
Luca Bindi

AbstractLeguernite, ideally Bi12.67O14(SO4)5, is a new mineral found in high-temperature fumarolic assemblages at La Fossa crater, Vulcano, Aeolian Islands, Italy. It occurs as aggregates of needleshaped crystals associated strictly with anglesite, balićžunićite and an unknown Bi sulfate. Leguernite is colourless to white, transparent, non-fluorescent, has a sub-adamantine lustre and a white streak. Electron microprobe data led to the chemical formula (on the basis of 34 anions p.f.u.) (Bi12.40Pb0.15)Σ=12.55S5.08O34. The calculated density is 7.375 g cm–3. A Raman spectrum collected on a single crystal of leguernite confirmed the anhydrous nature of the mineral.Leguernite is monoclinic, space group P2, with a = 11.2486(11), b = 5.6568(6), c = 11.9139(10) Å , β = 99.177(7)º, V = 748.39(12) Å3 and Z = 1. The crystal structure is built up of Bi–O blocks of a fluorite-like structure with Bi12O14 composition separated by a single sulfate ion along [100] and by Bi(SO4)45– groups along [101]. It can also be described as composed of (001) layers with composition [Bi12O14(SO4)6+]n alternating with layers of composition [Bi(SO4)4]n5– along [001]. Leguernite shows significant similarities with the synthetic Bi14O16(SO4)5 compound.The eight strongest reflections in the powder X-ray diffraction data [d in Å (I) (hkl)] are: 3.220 (100) (013), 3.100 (95) (11), 2.83 (30) (020), 2.931 (25) (302), 2.502 (25) (04), 2.035 (20) (322), 1.875 (20) (24) and 5.040 (15) (110).The name is in honour of Franc¸ois “Fanfan” Le Guern (1942–2011), who was a very active volcanologist and specialist in volcanic gases and sublimates. Both the mineral and the mineral name have been approved by the IMA-CNMNC (2013–051).


2014 ◽  
Vol 78 (4) ◽  
pp. 1043-1055 ◽  
Author(s):  
D. Pinto ◽  
A. Garavelli ◽  
D. Mitolo

AbstractBalićžunićite, ideally Bi2O(SO4)2, is a new mineral found as a high-temperature fumarole sublimate (T = 600°C) at La Fossa crater, Vulcano, Aeolian Islands, Italy. It occurs as aggregates of mm-sized prismatic and elongated crystals (∼50 μm across and up to 200 μm long) associated with anglesite, leguernite, one other potentially new Bi-oxysulfate mineral, lillianite, galenobismutite, bismoclite, Cd-rich sphalerite, wurtzite, pyrite and pyrrhotite. Balićžunićite is colourless to white or pale brown, transparent and non-fluorescent. It has a vitreous lustre and a white streak. Electron microprobe analysis gives the following average chemical composition (wt.%): Bi2O3 68.68 and SO3 23.73, total 92.41. The empirical chemical formula, calculated on the basis of 9 anions p.f.u., is Bi1.99S2O9. The calculated density is 5.911 g/cm3.Balićžunićite is triclinic, space group P, with a 6.7386(3), b 11.1844(5), c 14.1754(7) Å, α 80.082(2)°, β 88.462(2)°, γ 89.517(2)°, V = 1052.01(8) Å3 and Z = 6. The six strongest reflections in the X-ray powder-diffraction data [d in Å(I) (hkl)] are: 3.146 (100) (033), 3.486 (21) (004), 3.409 (12) (01), 3.366 (7) (200), 5.562 (4) (11), 5.433 (4) (111). Balićžunićite is the natural analogue of the stable low-temperature a form of synthetic Bi2O(SO4)2. The name is in honour of Tonci Balić-Žunić(born 1952), Professor of Mineralogy at the Natural History Museum of the University of Cophenagen. Both the mineral and the mineral name have been approved by the IMA-CNMNC Commission (IMA2012-098).


2015 ◽  
Vol 79 (4) ◽  
pp. 1007-1018 ◽  
Author(s):  
Francesco Demartin ◽  
Carlo Castellano ◽  
Carlo Maria Gramaccioli

AbstractThe new mineral campostriniite, (Bi3+,Na)3(NH4,K)2Na2(SO4)6·H2O, was found in an active fumarole (fumarole FA, temperature ∼350°C) at La Fossa Crater, Vulcano, Aeolian Islands, Sicily, Italy. It occurs on a pyroclastic breccia as white prismatic crystals up to 0.2 mm long, in association with adranosite, demicheleite-(Br), demicheleite-(I), argesite and sassolite. The mineral is monoclinic, space group: C2/c (no. 15) with a = 17.748(3), b = 6.982(1) c = 18.221(3) Å, β = 113.97(1)°, V = 2063(1) Å3 and Z = 4. The six strongest reflections in the powder X-ray diffraction pattern are: [dobs in Å (I)(hkl)] 6.396(100)(110), 7.507(75)(202), 2.766(60)(316), 3.380(57)(312), 5.677(55)(111), 3.166(50)(4 0 2). The empirical formula (based on 25 anions p.f.u.) is Bi2.41N1.52Na2.41K0.48 S6.07H8.08O25. The calculated density is 3.87 g cm–3. Using single-crystal diffraction data, the structure was refined to a final R(F) = 0.051 for 3025 independent observed reflections [I > 2σ(I)]. Campostriniite is isostructural with görgeyite and belongs to the 7.CD group of the Strunz classification system. The structure contains two independent nine-fold coordinated sites, one of them located on a two-fold axis (M1) and the other one in general position (M2) essentially occupied by Bi3+ atoms and minor amounts of Na+ ions, an eight-fold coordinated site fully occupied by Na +ions and another eight-fold coordinated site occupied by NH+4 and K+ ions; three independent sulfate anions in a general position and a water molecule coordinated to M1 and located on a two-fold axis are also present.


2018 ◽  
Vol 83 (1) ◽  
pp. 137-142 ◽  
Author(s):  
Francesco Demartin ◽  
Carlo Castellano ◽  
Italo Campostrini

AbstractThe new mineral acmonidesite, (NH4,K,Pb2+,Na)9Fe42+(SO4)5Cl8, was found in an active fumarole (fumarole FA, temperature ~250°C) at La Fossa crater, Vulcano, Aeolian Islands, Sicily, Italy. It occurs on a pyroclastic breccia as brown prismatic crystals up to 0.10 mm long, in association with salammoniac, alunite and adranosite. The mineral is orthorhombic, space group C2221 (no. 20) with a = 9.841(1), b = 19.448(3) c = 17.847(3) Å, V = 3415.7(9) Å3 and Z = 4. The six strongest reflections in the powder X-ray diffraction pattern are: [dobs in Å(I)(hkl)] 8.766(100)(110), 1.805(88)(390), 5.178(45)(131), 4.250(42)(221), 2.926(42)(330) and 2.684(32)(261). The empirical formula (based on 28 anions per formula unit [pfu]) is (NH4)5.77K1.42Pb0.62Na1.24Fe3.96Mn0.08S5.04O20.16Cl7.97Br0.08. The idealised formula is (NH4,K,Pb2+,Na)9Fe42+(SO4)5Cl8. The calculated density is 2.551 g cm–3. Using single-crystal diffraction data, the structure was refined to a final R(F) = 0.0363 for 4614 independent observed reflections [I > 2σ(I)]. The structure contains two independent, distorted octahedral iron sites, Fe1 and Fe2, with the iron atoms in the 2+ oxidation state, as confirmed by the interatomic distances and bond-valence calculations (2.06 and 1.94 vu, respectively). Fe1 is surrounded by two chlorine atoms and four oxygens of the sulfate ions, with the following average distances (Å): Fe1–O 2.125 and Fe1–Cl 2.472; and Fe2 is surrounded by three chlorine atoms and three oxygens of the sulfate ions, with the following average distances (Å): Fe2–O 2.110 and Fe2–Cl 2.531. Three independent sulfate anions are also present and are connected with the iron polyhedra to form a three-dimensional structure containing voids occupied by four independent ammonium ions (two of them partially replaced by K+), one Na+/Pb2+ site and one Cl– ion.


2011 ◽  
Vol 75 (6) ◽  
pp. 2847-2855 ◽  
Author(s):  
F. Demartin ◽  
C. M. Gramaccioli ◽  
I. Campostrini ◽  
C. Castellano

AbstractCossaite, ideally (Mg0.5,☐)Al6(SO4)6(HSO4)F6·36H20, was found in the altered pyroclastic breccia of an active fumarole (T about 350°C) located at the rim of the La Fossa crater, Vulcano Island, Aeolian archipelago, Sicily, Italy. Cossaite is trigonal, space group R3̄, with a = 22.010(2), c = 9.238(1) Å, V = 3875.6(6) Å3, Z = 3. It forms stout prismatic hexagonal crystals up to 100 μm in size, terminated by rhombohedral faces, and is associated with thermessaite, vlodavetsite, sassolite and salammoniac. Cossaite is colourless to white, the streak is white and the lustre vitreous. It is not fluorescent in either long-wave or short-wave ultraviolet radiation. The calculated density is 2.075 g cm–3. The mean refractive index nobs is 1.49(1) (589 nm). Chemical analysis gave MgO 1.4, A12O3 19.5, SO3 34.7, F 5.7, (H2O 40.85, from structure refinement), O=F –2.4, total 99.75 wt.%, corresponding to the empirical formula Mg0.56Al6.19S7.01H73.37F4.85O65.15 calculated on the basis of 70 oxygen plus fluorine atoms. The strongest six lines in the X-ray powder diffraction pattern [dobs(Å) (I) (hkl)] are: 4.15 (100) (140), 3.87 (70) (32̄2), 11.00 (50) (110), 4.58 (25) (131), 2.770 (20) (3̄33), 2.166 (20) (1̄8̄1). The crystal structure was refined to a final R index of 0.0349. It contains octahedral [A1(H2O)5F]2+ cations and sulphate anions interacting via hydrogen bonds to form channels running along [001], where disordered [Mg(H2O)6]2+ cations and hydrogensulphate anions are hosted.


Minerals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 385 ◽  
Author(s):  
Dan Holtstam ◽  
Luca Bindi ◽  
Andreas Karlsson ◽  
Jörgen Langhof ◽  
Thomas Zack ◽  
...  

Kesebolite-(Ce), ideal formula CeCa2Mn(AsO4)[SiO3]3, is a new mineral (IMA No. 2019-097) recovered from mine dumps at the Kesebol Mn-(Fe-Cu) deposit in Västra Götaland, Sweden. It occurs with rhodonite, baryte, quartz, calcite, talc, andradite, rhodochrosite, K-feldspar, hematite, gasparite-(Ce), chernovite-(Y) and ferriakasakaite-(Ce). It forms mostly euhedral crystals, with lengthwise striation. The mineral is dark grayish-brown to brown, translucent, with light brown streak. It is optically biaxial (+), with weak pleochroism, and ncalc = 1.74. H = 5–6 and VHN100 = 825. Fair cleavage is observed on {100}. The calculated density is 3.998(5) g·cm−3. Kesebolite-(Ce) is monoclinic, P21/c, with unit-cell parameters from X-ray single-crystal diffraction data: a = 6.7382(3), b = 13.0368(6), c = 12.0958(6) Å, β = 98.578(2)°, and V = 1050.66(9) Å3, with Z = 4. Strongest Bragg peaks in the X-ray powder pattern are: [I(%), d(Å) (hkl)] 100, 3.114 (20-2); 92, 2.924 (140); 84, 3.138 (041); 72, 2.908 (014); 57, 3.228 (210); 48, 2.856 (042); 48, 3.002 (132). The unique crystal structure was solved and refined to R1 = 4.6%. It consists of 6-periodic single silicate chains along (001); these are interconnected to infinite (010) strings of alternating, corner-sharing MnO6 and AsO4 polyhedra, altogether forming a trellis-like framework parallel to (100).


1994 ◽  
Vol 58 (390) ◽  
pp. 59-68 ◽  
Author(s):  
R. F. Symes ◽  
G. Cressey ◽  
A. J. Griddle ◽  
C. J. Stanley ◽  
J. G. Francis ◽  
...  

AbstractParkinsonite, ideally (Pb,Mo,□)8O8Cl2, is a new mineral from the Merehead Quarry, Cranmore, Somerset, England. It occurs as compact clusters or patches of red to purplish red bladed crystals, which have an adamantine lustre and a perfect {001} cleavage and occupy fractures and cavities in carbonate vughs in veins of manganese and iron oxide and hydroxide minerals. Associated minerals are mendipite, diaboleite, chloroxiphite, wulfenite, cerussite and hydrocerussite. Discrete crystals were not found; intergrown crystalline aggregates are the usual form of occurrence. The maximum grain size is about 300 × 100 µm, but most grains are appreciably smaller. Parkinsonite was synthesized using high purity chemicals. The measured density of the synthetic material is 7.32 g/cm3; the calculated density is 7.39 g/cm3, the difference being due to minor impurity and slight porosity in the synthetic sample. Parkinsonite is translucent. Reflectance spectra were obtained in air and in oil. Refractive indices calculated from these (at 589 nm) are for Ro, 2.58, and Re', 2.42, i.e. uniaxial negative. VHN50 is 113–133 from which the calculated Mobs hardness is 2–2.5.X-ray studies show that parkinsonite is tetragonal with space group I4/mmm, I4̄2m, I4̄m2, I4/mm, or I422 and a 3.9922(3), c 22.514(2) Å. It has a cell volume of 358.82(5) Å3 with Z = 1. The strongest six lines of the X-ray powder diffraction pattern are [d in Å (I) (hkl)] 2.823, 2.813(100) (110,008); 5.63(85) (004); 2.251(33) (116, 0.0.10); 2.988(27) (105); 3.750(15) (006); 1.994(11) (200,118). Averaged electron microprobe analyses give the empirical formula Pb6.34Mo0.89□0.77O8.02Cl1.98 on the basis of 10 atoms [O + Cl]. The name is for Reginald F. D. Parkinson, mineral collector of Somerset, UK, who first found the mineral.


2014 ◽  
Vol 78 (1) ◽  
pp. 203-213 ◽  
Author(s):  
F. Demartin ◽  
C. Castellano ◽  
I. Campostrini

AbstractThe new mineral therasiaite, ideally (NH4)3KNa2Fe2+Fe3+(SO4)3Cl5, was found in a mediumtemperature (∼250°C) intracrater active fumarole at La Fossa crater, Vulcano, Aeolian Islands, Sicily, Italy. It occurs on a pyroclastic breccia as brown to dark brown equant to short prismatic crystals up to 0.1 mm in length, in association with salammoniac, kremersite and adranosite. The mineral is monoclinic, space group: Cc (no. 9) with a = 18.284(4), b = 12.073(2), c = 9.535(2) Å, β = 108.10(3)°, V = 2000.6(7) Å3 and Z = 4. The six strongest reflections in the X-ray powder diffraction pattern are: [dobs in Å(I)(hkl)] 2.812(100)(23), 2.664(77)(13), 3.297(28)(33), 3.208(14)(2), 3.008(12)(040), 2.942(11)(331). The empirical formula (based on 17 anions per formula unit (p.f.u.)) is (NH4)2.68K1.32Na2.04Fe1.76Al0.12Mn0.12S2.98O11.95Cl5.05. The measured density is 2.41(1) g cm−3, dcalc = 2.395 g cm−3. The mineral is biaxial (−) with α= 1.585(3) β = 1.615(3) and γ = 1.630(3) (white light). Using single-crystal diffraction data, the structure was refined to a final R(F) = 0.0240 for 5574 independent observed reflections [I > 2σ(I)]. The structure of therasiaite displays a novel topology and contains two independent, distorted octahedral Fe sites, with the Fe atoms in oxidation state 3+ and 2+, respectively, each surrounded by three Cl atoms and three oxygens of the sulfate ions. The Fe octahedra and the three independent sulfate anions are connected to form chains running along [001]. Voids between the chains are occupied by three independent ammonium ions (partially replaced by K+), one K+ and two Na+ ions. The formula resulting from the structure refinement is [(NH4)2.25K0.75]KNa2Fe2(SO4)3Cl5.


2010 ◽  
Vol 74 (1) ◽  
pp. 147-157 ◽  
Author(s):  
A. Garavelli ◽  
T. Balić-Žunić ◽  
D. Mitolo ◽  
P. Acquafredda ◽  
E. Leonardsen ◽  
...  

AbstractHeklaite, with the ideal formula KNaSiF6, was found among fumarolic encrustations collected in 1992 on the Hekla volcano, Iceland. Heklaite forms a fine-grained mass of micron- to sub-micron-sized crystals intimately associated with malladrite, hieratite and ralstonite. The mineral is colourless, transparent, non-fluorescent, has a vitreous lustre and a white streak. The calculated density is 2.69 g cm–3. An SEM-EDS quantitative chemical analysis shows the following range of concentrations (wt.%): Na 11.61–12.74 (average 11.98), K 17.02–18.97 (average 18.29), Si 13.48 –14.17 (average 13.91), F 54.88–56.19 (average 55.66). The empirical chemical formula, calculated on the basis of 9 a.p.f.u., is Na1.07K0.96Si1.01F5.97. X-ray powder diffraction indicates that heklaite is orthorhombic, space group Pnma, with the following unit-cell parameters: a = 9.3387(7) Å, b = 5.5032(4) Å, c = 9.7957(8) Å , V = 503.43(7) Å3, Z = 4. The eight strongest reflections in the powder diffraction pattern [d in Å (I/I0) (hkl)] are: 4.33 (53) (102); 4.26 (56) (111); 3.40 (49) (112); 3.37 (47) (202); 3.34 (100) (211); 2.251 (27) (303); 2.050 (52) (123); 2.016 (29) (321). On the basis of chemical analyses and X-ray data, heklaite corresponds to the synthetic compound KNaSiF6. The name is for the type locality, the Hekla volcano, Iceland.


Sign in / Sign up

Export Citation Format

Share Document