scholarly journals Kesebolite-(Ce), CeCa2Mn(AsO4)[SiO3]3, a New REE-Bearing Arsenosilicate Mineral from the Kesebol Mine, Åmål, Västra Götaland, Sweden

Minerals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 385 ◽  
Author(s):  
Dan Holtstam ◽  
Luca Bindi ◽  
Andreas Karlsson ◽  
Jörgen Langhof ◽  
Thomas Zack ◽  
...  

Kesebolite-(Ce), ideal formula CeCa2Mn(AsO4)[SiO3]3, is a new mineral (IMA No. 2019-097) recovered from mine dumps at the Kesebol Mn-(Fe-Cu) deposit in Västra Götaland, Sweden. It occurs with rhodonite, baryte, quartz, calcite, talc, andradite, rhodochrosite, K-feldspar, hematite, gasparite-(Ce), chernovite-(Y) and ferriakasakaite-(Ce). It forms mostly euhedral crystals, with lengthwise striation. The mineral is dark grayish-brown to brown, translucent, with light brown streak. It is optically biaxial (+), with weak pleochroism, and ncalc = 1.74. H = 5–6 and VHN100 = 825. Fair cleavage is observed on {100}. The calculated density is 3.998(5) g·cm−3. Kesebolite-(Ce) is monoclinic, P21/c, with unit-cell parameters from X-ray single-crystal diffraction data: a = 6.7382(3), b = 13.0368(6), c = 12.0958(6) Å, β = 98.578(2)°, and V = 1050.66(9) Å3, with Z = 4. Strongest Bragg peaks in the X-ray powder pattern are: [I(%), d(Å) (hkl)] 100, 3.114 (20-2); 92, 2.924 (140); 84, 3.138 (041); 72, 2.908 (014); 57, 3.228 (210); 48, 2.856 (042); 48, 3.002 (132). The unique crystal structure was solved and refined to R1 = 4.6%. It consists of 6-periodic single silicate chains along (001); these are interconnected to infinite (010) strings of alternating, corner-sharing MnO6 and AsO4 polyhedra, altogether forming a trellis-like framework parallel to (100).

2017 ◽  
Vol 81 (4) ◽  
pp. 917-922
Author(s):  
Peter Elliott

AbstractThe crystal structure of the copper aluminium phosphate mineral sieleckiite, Cu3Al4(PO4)2 (OH)12·2H2O, from the Mt Oxide copper mine, Queensland, Australia was solved from single-crystal X-ray diffraction data utilizing synchrotron radiation. Sieleckiite has monoclinic rather than triclinic symmetry as previously reported and is space group C2/m with unit-cell parameters a = 11.711(2), b = 6.9233(14), c = 9.828(2) Å, β = 92.88(3)°, V = 795.8(3) Å3and Z = 2. The crystal structure, which has been refined to R1 = 0.0456 on the basis of 1186 unique reflections with Fo > 4σF, is a framework of corner-, edge- and face- sharing Cu and Al octahedra and PO4 tetrahedra.


1998 ◽  
Vol 54 (4) ◽  
pp. 358-364 ◽  
Author(s):  
K. G. Hatzisymeon ◽  
S. C. Kokkou ◽  
A. N. Anagnostopoulos ◽  
P. I. Rentzeperis

A series of thallium ternary chalcogenides with the composition Tl2x In2(1−x)Se2, x = 0.2, 0.3,...0.9, have been studied by X-ray powder and, for some of them, single-crystal diffraction. They are tetragonal, space group I4/mcm, Z = 4, and isostructural with the binary semiconductor TlSe. Their crystal structures have been solved by direct methods and refined by the Rietveld method to a precision which is satisfactorily comparable to single-crystal results. As x is changed from x = 0.2 to x = 0.9 the unit-cell parameters and volume decrease or increase following Kurnakov's law, which is valid for solid solutions. Refined positional parameters of Se, In—Se and Tl—Se bond lengths vary with x also according to the same law. The distribution of In and Tl cations in 4(a) and 4(b) sites depends on the stoichiometry x and the crystals are composed of [In3+Se2]_{\infty}^- chains along the c axis in which InSe4 tetrahedra share edges; the chains are interconnected with Tl+(In+) ions.


2013 ◽  
Vol 77 (7) ◽  
pp. 2931-2939 ◽  
Author(s):  
U. Hålenius ◽  
F. Bosi

AbstractOxyplumboroméite, Pb2Sb2O7, is a new mineral of the roméite group of the pyrochlore supergroup (IMA 2013-042). It is found together with calcite and leucophoenicite in fissure fillings in tephroite skarn at the Harstigen mine, Värmland, Sweden. The mineral occurs as yellow to brownish yellow rounded grains or imperfect octahedra. Oxyplumboroméite has a Mohs hardness of ∼5, a calculated density of 6.732 g/cm3 and is isotropic with a calculated refractive index of 2.061. Oxyplumboroméite is cubic, space group Fdm, with the unit-cell parameters a = 10.3783(6) Å, V = 1117.84(11) Å3 and Z = 8. The strongest five X-ray powder-diffraction lines [d in Å(I)(hkl)] are: 2.9915(100)(222), 2.5928(32)(400), 1.8332(48)(440), 1.5638(38)(622) and 1.1900(12)(662). The crystal structure of oxyplumboroméite was refined to an R1 index of 3.02% using 160 unique reflections collected with MoKα radiation. Electron microprobe analyses in combination with crystal-structure refinement, infrared, Mössbauer and electronic absorption spectroscopy resulted in the empirical formula A(Pb0.92Ca0.87Mn0.09Sr0.01Na0.05)Σ1.93B(Sb1.73Fe3+0.27)Σ2.00X+Y[O6.64(OH)0.03]Σ6.67. Oxyplumboroméite is the Pb analogue of oxycalcioroméite, ideally Ca2Sb2O7.


2017 ◽  
Vol 81 (2) ◽  
pp. 355-368 ◽  
Author(s):  
Dan Topa ◽  
Emil Makovicky

AbstractThe crystal structure of veenite is reported for the first time from a sample from the type locality of Madoc (Ontario, Canada). It has been solved and refined by X-ray single-crystal diffraction on the basis of 4973 observed reflections (with Fo > 4σ(Fo)) with a final R1 = 0.0396. Veenite is monoclinic P21, with unit-cell parameters a = 8.429(2), b = 26.069(5), c = 8.962(2) Å, β = 117.447(2)o. The bulk veenite composition is Ag0.15Pb16.029Sb8.836As6.99S39.95 (for Z = 1) corresponding to N = 4.09 (Me8NS8N + 8, theoretical value is 4.0), with the percentage of the Ag-(As,Sb) substituted end-member only equal to 3.51 mol.%, i.e., a nearly pure Pb-Sb-As sulfosalt. The crystal structure is typical for the N = 4 sartorite homologue, with zig-zag walls of trigonal coordination prisms of Pb which separate slabs of diagonally oriented double-layers populated by Sb and As with partial Pb substitution. Orientation of three-membered crankshaft chains formed by strong (As,Sb) – S bonds on the two surfaces of double-layers differs substantially from that in dufrénoysite, which is a pure Pb-As (N = 4) sulfosalt.


1980 ◽  
Vol 35 (11) ◽  
pp. 1482-1483 ◽  

Abstract In the course of our investigations of the ternary systems Na-Au-Si(Ge) we obtained the new compounds NaAu3Si and NaAu3Ge. Their crystal structure has been determined from single crystal X-ray diffraction data. They crystallize in the cubic space group Pa 3 with unit cell parameters a = 891,6 pm and a = 902,1 pm, resp., and Z = 8.


1978 ◽  
Vol 33 (10) ◽  
pp. 1077-1079 ◽  
Author(s):  
Heinz-Dieter Sinnen ◽  
Hans-Uwe Schuster

Abstract In the course of our investigation of the ternary system K-Au-Sn we obtained the new compound KAu4Sn2. Its crystal structure has been determinated from single crystal X-ray diffraction data. It crystallizes in the tetragonal space group 1̅4̅c2 with unit-cell parameters a = 884.7 and c = 817.8 pm and Z = 4. The structure is comparable to that of the Tl2Se.


2013 ◽  
Vol 28 (1) ◽  
pp. 13-17 ◽  
Author(s):  
F. Laufek ◽  
A. Vymazalová ◽  
D.A. Chareev ◽  
A.V. Kristavchuk ◽  
J. Drahokoupil ◽  
...  

The (Ag,Pd)22Se6 phase was synthesized from individual elements by silica glass tube technique and structurally characterized from powder X-ray diffraction data. The (Ag,Pd)22Se6 phase crystallizes in Fm$\overline3$m symmetry, unit-cell parameters: a = 12.3169(2) Å, V = 1862.55(5) Å3, Z = 4, and Dc = 10.01 g/cm3. The crystal structure of the (Ag,Pd)22Se6 phase represents a stuffed 3a.3a.3a superstructure of the Pd structure (fcc), where only 4 from 108 available octahedral holes are occupied. Its crystal structure is related to the Cr23C6 structure type.


Author(s):  
Dan Holtstam ◽  
Luca Bindi ◽  
Paola Bonazzi ◽  
Hans-Jürgen Förster ◽  
Ulf B. Andersson

ABSTRACT Arrheniusite-(Ce) is a new mineral (IMA 2019-086) from the Östanmossa mine, one of the Bastnäs-type deposits in the Bergslagen ore region, Sweden. It occurs in a metasomatic F-rich skarn, associated with dolomite, tremolite, talc, magnetite, calcite, pyrite, dollaseite-(Ce), parisite-(Ce), bastnäsite-(Ce), fluorbritholite-(Ce), and gadolinite-(Nd). Arrheniusite-(Ce) forms anhedral, greenish-yellow translucent grains, exceptionally up to 0.8 mm in diameter. It is optically uniaxial (–), with ω = 1.750(5), ε = 1.725(5), and non-pleochroic in thin section. The calculated density is 4.78(1) g/cm3. Arrheniusite-(Ce) is trigonal, space group R3m, with unit-cell parameters a = 10.8082(3) Å, c = 27.5196(9) Å, and V = 2784.07(14) Å3 for Z = 3. The crystal structure was refined from X-ray diffraction data to R1 = 3.85% for 2286 observed reflections [Fo > 4σ(Fo)]. The empirical formula for the fragment used for the structural study, based on EPMA data and results from the structure refinement, is: (Ca0.65As3+0.35)Σ1(Mg0.57Fe2+0.30As5+0.10Al0.03)Σ1[(Ce2.24Nd2.13La0.86Gd0.74Sm0.71Pr0.37)Σ7.05(Y2.76Dy0.26Er0.11Tb0.08Tm0.01Ho0.04Yb0.01)Σ3.27Ca4.14]Σ14.46(SiO4)3[(Si3.26B2.74)Σ6O17.31F0.69][(As5+0.65Si0.22P0.13)Σ1O4](B0.77O3)F11; the ideal formula obtained is CaMg[(Ce7Y3)Ca5](SiO4)3(Si3B3O18)(AsO4)(BO3)F11. Arrheniusite-(Ce) belongs to the vicanite group of minerals and is distinct from other isostructural members mainly by having a Mg-dominant, octahedrally coordinated site (M6); it can be considered a Mg-As analog to hundholmenite-(Y). The threefold coordinated T5 site is partly occupied by B, like in laptevite-(Ce) and vicanite-(Ce). The mineral name honors C.A. Arrhenius (1757–1824), a Swedish officer and chemist, who first discovered gadolinite-(Y) from the famous Ytterby pegmatite quarry.


2015 ◽  
Vol 71 (9) ◽  
pp. 1189-1193 ◽  
Author(s):  
Yoshiki Aikawa ◽  
Hiroshi Kida ◽  
Yuichi Nishitani ◽  
Kunio Miki

Proper protein folding is an essential process for all organisms. Prefoldin (PFD) is a molecular chaperone that assists protein folding by delivering non-native proteins to group II chaperonin. A heterohexamer of eukaryotic PFD has been shown to specifically recognize and deliver non-native actin and tubulin to chaperonin-containing TCP-1 (CCT), but the mechanism of specific recognition is still unclear. To determine its crystal structure, recombinant human PFD was reconstituted, purified and crystallized. X-ray diffraction data were collected to 4.7 Å resolution. The crystals belonged to space groupP21212, with unit-cell parametersa= 123.2,b= 152.4,c= 105.9 Å.


Author(s):  
Gohil S. Thakur ◽  
Hans Reuter ◽  
Claudia Felser ◽  
Martin Jansen

The crystal structure redetermination of Sr2PdO3 (distrontium palladium trioxide) was carried out using high-quality single-crystal X-ray data. The Sr2PdO3 structure has been described previously in at least three reports [Wasel-Nielen & Hoppe (1970). Z. Anorg. Allg. Chem. 375, 209–213; Muller & Roy (1971). Adv. Chem. Ser. 98, 28–38; Nagata et al. (2002). J. Alloys Compd. 346, 50–56], all based on powder X-ray diffraction data. The current structure refinement of Sr2PdO3, as compared to previous powder data refinements, leads to more precise cell parameters and fractional coordinates, together with anisotropic displacement parameters for all sites. The compound is confirmed to have the orthorhombic Sr2CuO3 structure type (space group Immm) as reported previously. The structure consists of infinite chains of corner-sharing PdO4 plaquettes interspersed by SrII atoms. A brief comparison of Sr2PdO3 with the related K2NiF4 structure type is given.


Sign in / Sign up

Export Citation Format

Share Document