Kihlmanite-(Ce), Ce2TiO2[SiO4](HCO3)2(H2O), a new rare-earth mineral from the pegmatites of the Khibiny alkaline massif, Kola Peninsula, Russia

2014 ◽  
Vol 78 (3) ◽  
pp. 483-496 ◽  
Author(s):  
V. N. Yakovenchuk ◽  
S.V. Krivovichev ◽  
G. Y. Ivanyuk ◽  
Ya. A. Pakhomovsky ◽  
E.A. Selivanova ◽  
...  

AbstractKihlmanite-(Ce), Ce2TiO2[SiO4](HCO3)2(H2O), is a new rare-earth titanosilicate carbonate, closely related to tundrite-(Ce). It is triclinic, P, a = 4.994(2), b = 7.54(2), c = 15.48(4) Å, α = 103.5(4), β = 90.7(2), γ = 109.2(2)o , V = 533(1) Å3, Z = 2 (from powder diffraction data) or a = 5.009(5), b = 7.533(5), c = 15.407(5) Å, α = 103.061(5), β = 91.006(5), γ = 109.285(5)°, V = 531.8(7) Å3, Z = 2 (from single-crystal X-ray diffraction data). The mineral was found in the arfvedsonite-aegirine-microcline vein in fenitized metavolcanic rock at the foot of the Mt Kihlman (Chil’man), near the western contact of the Devonian Khibiny alkaline massif and the Proterozoic Imandra-Varzuga greenstone belt. It forms brown spherulites (up to 2 cm diameter) and sheaf-like aggregates of prismatic crystals, flattened on {010} and up to 0.5 mm diameter. Both spherulites and aggregates occur in interstices in arfvedsonite and microcline, in intimate association with golden-green tundrite-(Ce). Kihlmanite-(Ce) is brown, with a vitreous lustre and a pale yellowish-brown streak. The cleavage is perfect on {010}, parting is perpendicular to c and the fracture is stepped. Mohs hardness is ∼3. In transmitted light, the mineral is yellowish brown; pleochroism and dispersion were not observed. Kihlmanite-(Ce) is biaxial (+), α = 1.708(5), β = 1.76(1), γ = 1.82(1) (589 nm), 2Vcalc = 89°. The optical orientation is Y ^ c = 5°, other details are unclear. The calculated and measured densities are 3.694 and 3.66(2) g cm−3, respectively. The mean chemical composition, determined by electron microprobe, is: Na2O 0.13, Al2O3 0.24, SiO2 9.91, CaO 1.50, TiO2 11.04, MnO 0.26, Fe2O3 0.05, Nb2O5 2.79, La2O3 12.95, Ce2O3 27.33, Pr2O3 2.45, Nd2O3 8.12, Sm2O3 1.67, Gd2O3 0.49 wt.%, with CO2 15.0 and H2O 6.0 wt.% (determined by wet chemical and Penfield methods, respectively), giving a total of 99.93 wt.%. The empirical formula calculated on the basis of Si + Al = 1 atom per formula unit is (Ca0.16Na0.11Mn0.02)∑0.29[(Ce0.98La0.47Pr0.09Nd0.29Sm0.06Gd0.02)∑1.91(Ti0.82Nb0.12)∑0.94O2 (Si0.97Al0.03)∑1O4.02(HCO3)2.01](H2O)0.96. The simplified formula is Ce2TiO2(SiO4)(HCO3)2·H2O. The mineral reacts slowly in cold 10% HCl with weak effervescence and fragmentation into separate plates. The strongest X-ray powder-diffraction lines [listed as d in Å(I) (hkl)] are as follows: 15.11(100)(00), 7.508(20)(00), 6.912(12)(01), 4.993(14)(00), 3.563(15)(01), 2.896(15)(1). The crystal structure of kihlmanite-(Ce) was refined to R1 = 0.069 on the basis of 2441 unique observed reflections (MoKα, 293 K). It is closely related to the crystal structure of tundrite-(Ce) and is based upon [Ce2TiO2(SiO4)(HCO3)2] layers parallel to (001). Kihlmanite-(Ce) can be considered as a cationdeficient analogue of tundrite-(Ce). The mineral is named in honour of Alfred Oswald Kihlman (1858–1938), a remarkable Finnish geographer and botanist who participated in the Wilhelm Ramsay expeditions to the Khibiny Mountains in 1891–1892. The mineral name also reflects its occurrence at the Kihlman (Chil’man) Mountain.

1998 ◽  
Vol 13 (4) ◽  
pp. 241-243 ◽  
Author(s):  
Jialin Yan ◽  
Shiwei Wu ◽  
Xiangli Ou ◽  
Lingmin Zeng ◽  
Jianmin Hao

The crystal structure of the rare earth (RE) compound CeFeGe3 has been studied by X-ray powder diffraction and refined by the Rietveld profile fitting method. The compound has the tetragonal BaNiSn3-type structure, space group I4mm (No. 107) a=4.3294(1) Å, c=9.9444(3) Å, V=186.39 Å3, Z=2, and Dx=7.372 g·cm−3. The figure of merit FN for the powder data is F30=184.3(0.0037,44). The structure refinement was performed with 106 reflections and led to Rp=13.2% and Rwp=18.2%. Powder data are given.


2010 ◽  
Vol 25 (3) ◽  
pp. 247-252 ◽  
Author(s):  
F. Laufek ◽  
J. Návrátil

The crystal structure of skutterudite-related phase IrGe1.5Se1.5 has been refined by the Rietveld method from laboratory X-ray powder diffraction data. Refined crystallographic data for IrGe1.5Se1.5 are a=12.0890(2) Å, c=14.8796(3) Å, V=1883.23(6) Å3, space group R3 (No. 148), Z=24, and Dc=8.87 g/cm3. Its crystal structure can be derived from the ideal skutterudite structure (CoAs3), where Se and Ge atoms are ordered in layers perpendicular to the [111] direction of the original skutterudite cell. Weak distortions of the anion and cation sublattices were also observed.


2016 ◽  
Vol 31 (4) ◽  
pp. 292-294 ◽  
Author(s):  
V. D. Zhuravlev ◽  
A. P. Tyutyunnik ◽  
N. I. Lobachevskaya

A polycrystalline sample of Ca4ZrGe3O12 was synthesized using the nitrate–citrate method and heated at 850–1100 °C. Structural refinement based on X-ray powder diffraction data showed that the crystal structure is of the garnet type with a cubic unit-cell parameter [a = 12.71299(3) Å] and the space group Ia$\bar 3$d. The structural formula is presented as Ca3[CaZr]octa[Ge]tetraO12.


2018 ◽  
Vol 34 (1) ◽  
pp. 74-75
Author(s):  
J. A. Kaduk ◽  
K. Zhong ◽  
T. N. Blanton ◽  
S. Gates-Rector ◽  
T. G. Fawcett

Bendamustine hydrochloride monohydrate (marketed as Treanda®) is a nitrogen mustard purine analog alkylator used in the treatment of chronic lymphocytic leukemia (CLL) and non-Hodgkin lymphomas. Commercial bendamustine hydrochloride monohydrate crystallizes in the monoclinic space group P21/c (14), with a = 4.71348(4) Å, b = 47.5325(3) Å, c = 8.97458 (5) Å, β = 96.6515(8)°, V = 1997.161(23) Å3, and Z = 4. A reduced cell search in the Cambridge Structural Database yielded a previously reported crystal structure (Allen, 2002), which did not include hydrogens (Reck, 2006). In this work, the sample was ordered from Santa Cruz Biotechnology, and analyzed as received. The room-temperature crystal structure was refined using synchrotron (λ = 0.413896 Å) powder diffraction data, density functional theory (DFT), and Rietveld refinement techniques. Hydrogen positions were included as part of the structure, and recalculated during the refinement. The diffraction data were collected on beamline BM-11 at the Advanced Photon Source, Argonne National Laboratory. Figure 1 shows the powder X-ray diffraction pattern of the compound. The pattern is included in the Powder Diffraction File as entry 00-064-1508.


Author(s):  
Aleksandr N Zaloga ◽  
Sergey V Burakov ◽  
Igor S Yakimov ◽  
Konstantin A Gusev ◽  
Petr S Dubinin

2014 ◽  
Vol 950 ◽  
pp. 48-52
Author(s):  
De Gui Li ◽  
Ming Qin ◽  
Liu Qing Liang ◽  
Zhao Lu ◽  
Shu Hui Liu ◽  
...  

The Al2M3Y(M=Cu, Ni) compound was synthesized by arc melting under argon atmosphere. The high-quality powder X-ray diffraction data of Al2M3Y have been presented. The refinement of the X-ray diffraction patterns for the Al2M3Y compound show that the Al2M3Y has hexagonal structure, space groupP6/mmm(No.191), with a = b = 5.1618(2) Å, c = 4.1434(1) Å,V= 95.6 Å3,Z= 1,ڑx= 5.7922 g/cm3,F30= 155.5(0.0057, 34), RIR = 2.31 for Al2Cu3Y, and with a = b = 5.0399(1) Å, c = 4.0726(1) Å,V= 89.59 Å3,Z= 1,ڑx= 5.9118 g/cm3,F30= 135.7(0.0072, 30), RIR = 2.54 for Al2Ni3Y.


1990 ◽  
Vol 68 (8) ◽  
pp. 1352-1356 ◽  
Author(s):  
Walter Abriel ◽  
André Du Bois ◽  
Marek Zakrzewski ◽  
Mary Anne White

The crystal structure of the title compound has been determined by single crystal X-ray diffraction data collected at 293 K, and refined to a final Rw of 0.057. The crystals are rhombohedral, space group [Formula: see text], with a = 27.134(8) Å, c = 10.933(2) Å, and Z = 18. The mole ratio of Dianin's compound (4-p-hydroxyphenyl-2,2,4-trimethylchroman) to CCl4 is 6:1. The guest molecules are disordered. X-ray powder diffraction was carried out in the temperature range from 10 to 300 K. From this, the thermal expansion coefficients for the a- and c-axes and the volume have been determined. Keywords: thermal expansion, crystal structure, clathrate.


Sign in / Sign up

Export Citation Format

Share Document