Ferrostalderite, CuFe2TlAs2S6, a new mineral from Lengenbach, Switzerland: occurrence, crystal structure, and emphasis on the role of iron in sulfosalts

2016 ◽  
Vol 80 (1) ◽  
pp. 175-186 ◽  
Author(s):  
Cristian Biagioni ◽  
Luca Bindi ◽  
Fabrizio Nestola ◽  
Ralph Cannon ◽  
Philippe Roth ◽  
...  

AbstractThe new mineral species ferrostalderite, CuFe2TlAs2S6, was discovered in the Lengenbach quarry, Binn Valley, Wallis, Switzerland. It occurs as minute, metallic, black, equant to prismatic crystals, up to 50 mu;m, associated with dolomite, realgar, baumhauerite (?) and pyrite. Minimum and maximum reflectance data for COM wavelengths in air are [λ (nm): R (%)]: 471.1: 24.2/25.4; 548.3: 23.7/24.7; 586.6: 22.9/23.8; 652.3: 21.0/22.0. Electron microprobe analyses give (wt.%): Cu 6.24(25), Ag 4.18(9), Fe 9.95(83), Zn 4.46(91), Hg 1.22(26), Tl 26.86(62), As 19.05(18), Sb 0.63(6),S 25.39(47), total 97.98(72). On the basis of 12 atoms per formula unit, the chemical formula of ferrostalderite is Cu0.75(2)Ag0.30(1)Fe1.36(10)Zn0.52(11)Hg0.05(1)Tl1.00(1)[As1.94(4)Sb0.04(1)]∑1.98(4)S6.04(4). The new mineral is tetragonal, space group I4̄2 m, with a = 9.8786(5), c = 10.8489(8) Å, V = 1058.71(11) Å3, Z = 4. The main diffraction lines of the calculated powder diagram are [d (in Å), intensity, hkl]: 4.092, 70, 211; 3.493, 23, 220; 3.396, 35, 103; 3.124, 17, 310; 2.937, 100, 222; 2.656, 19, 321; 2.470, 19, 400; 2.435, 33, 303. The crystal structure of ferrostalderite has been refined by Xray single-crystal data to a final R1= 0.050, on the basis of 1169 reflections with F0 > 4σ(F0). It shows a three dimensional framework of (Cu,Fe)-centred tetrahedra (1M1 + 2 M2), with channels parallel to [001] hosting disymmetric TlS6and (As,Sb)S3 polyhedra. Ferrostalderite is derived from its isotype stalderiteM1CuM2Zn2TlAs2S6through the homovalent substitution M2Zn2+ → M2Fe2+. The ideal crystal-chemical formula of ferrostalderite isM1CuM2Fe2TlAs2S6.

2015 ◽  
Vol 79 (5) ◽  
pp. 1089-1098 ◽  
Author(s):  
Luca Bindi ◽  
Cristian Biagioni ◽  
Thomas Raber ◽  
Philippe Roth ◽  
Fabrizio Nestola

AbstractThe new mineral species ralphcannonite, AgZn2TlAs2S6, was discovered in the Lengenbach quarry, Binn Valley, Wallis, Switzerland. It occurs as metallic black equant, isometric to prismatic crystals, up to 50 μm, associated with dufrénoysite, hatchite, realgar and baryte. Minimum and maximum reflectance data for COM wavelengths in air are [λ (nm): R (%)]: 471.1: 25.8/27.1; 548.3: 25.2/26.6; 586.6: 24.6/25.8; 652.3: 23.9/24.8. Electron microprobe analyses give (wt.%): Cu 2.01(6), Ag 8.50(16), Zn 10.94(20), Fe 3.25(8), Hg 7.92(12), Tl 24.58(26), As 18.36(19), Sb 0.17(4), S 24.03(21), total 99.76(71). On the basis of 12 atoms per formula unit, the chemical formula of ralphcannonite is Ag0.63(2)Cu0.25(2)Zn1.35(5)Fe0.47(1)Hg0.32(2)Tl0.97(3)[As1.97(6)Sb0.01(1)]Σ1.98(5)S6.03(8). The new mineral is tetragonal, space group I42m, with a = 9.861 (2), c = 11.125(3) Å, V = 1081.8(4) Å3, Z = 4. The main diffraction lines of the calculated powder diagram are [d (in Å), intensity, hkl]: 4.100, 85, 211; 3.471, 40, 103; 2.954, 100, 222; 2.465, 24, 400; 2.460, 39, 303. The crystal structure of ralphcannonite has been refined by X-ray single-crystal data to a final R1 = 0.030, on the basis of 140 observed reflections [Fo > 4σ(Fo)]. It shows a three dimensional framework of (Ag,Zn)-centred tetrahedra (1 M1 + 2 M2), with channels parallel to [001] hosting TlS6 and (As,Sb)S3 disymmetric polyhedra. Ralphcannonite is derived from its isotype routhierite M1CuM2Hg2TlAs2S6 through the double heterovalent substitution M1Cu+ + M2Hg2+ → M1Zn2+ + M2Ag+. This substitution obeys a steric constraint, with Ag+, the largest cation relative to Zn2+ and Cu+, entering the largest M2 site, as observed in arsiccioite. The ideal crystal-chemical formula of ralphcannonite is M1ZnM2(Zn0.5Ag0.5)2TlAs2S6.


2014 ◽  
Vol 78 (1) ◽  
pp. 101-117 ◽  
Author(s):  
C. Biagioni ◽  
E. Bonaccorsi ◽  
Y. Moëlo ◽  
P. Orlandi ◽  
L. Bindi ◽  
...  

AbstractThe new mineral species arsiccioite, AgHg2TlAs2S6, was discovered in the baryte-pyrite-iron oxide ore deposit exploited at the Monte Arsiccio mine, near Sant’Anna di Stazzema (Apuan Alps, Tuscany, Italy). It occurs as anhedral grains scattered in microcrystalline baryte, associated with cinnabar, laffittite, protochabournéite, pyrite, realgar, Hg-bearing sphalerite and stibnite. Arsiccioite is red, with a metallic to sub-metallic lustre. Minimum and maximum reflectance data for COM wavelengths in air are [λ (nm):R(%)]: 471.1: 29.0/29.4; 548.3: 27.6/28.3; 586.6: 26.1/26.5; 652.3: 24.2/24.6. Electron microprobe analyses give (wt.%): Cu 0.78(6), Ag 8.68(21), Zn 0.47(27), Fe 0.04(1), Hg 35.36(87), Cd 0.20(5), Tl 18.79(33), As 10.77(19), Sb 4.75(10), S 18.08(21), Se 0.07(5), total 97.99(44). On the basis of ΣMe= 6 a.p.f.u., the chemical formula is Ag0.87(2)Cu0.13(1)Zn0.08(4)Fe0.01(1)Hg1.91(5)Cd0.02(1)Tl1.00(2)(As1.56(2)Sb0.42(1))S1.98S6.12(6)Se0.01(1). Arsiccioite is tetragonal,I2m, witha10.1386(6),c11.3441(5) Å,V1166.1(2) Å3,Z= 4. The main diffraction lines of the powder diagram are [d(in Å), visually estimated intensity,hkl]: 4.195, m, 211; 3.542, m, 103; 3.025, vs, 222; 2.636, m, 114; 2.518, s, 400 and 303. The crystal structure of arsiccioite has been refined by single-crystal X-ray data to a finalR1= 0.030, on the basis of 893 observed reflections. It shows a three dimensional framework of (Hg,Ag)- centred tetrahedra (1M1 + 2M2), with channels parallel to [001] hosting TlS6and (As,Sb)S3 disymmetric polyhedra. Arsiccioite is derived from its isotype routhieriteM1CuM2Hg2TlAs2S6through the double heterovalent substitutionM1Cu++M2Hg2+→M1Hg2++M2Ag+. This substitution obeys a steric constraint, with Ag+, the largest cation relative to Hg2+and Cu+, entering the largestM2 site. The ideal crystal chemical formula of arsiccioite isM1HgM2(Hg0.5Ag0.5)2TlAs2S6. The crystal chemistry of the routhierite isotypic series is discussed. Finally, the distribution of Hg ore minerals in the Apuan Alps is reviewed.


Minerals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 702 ◽  
Author(s):  
Biagioni ◽  
Bindi ◽  
Mauro ◽  
Hålenius

The new mineral species scordariite, K8(Fe3+0.67□0.33)[Fe3+3O(SO4)6(H2O)3]2(H2O)11, was discovered in the Monte Arsiccio mine, Apuan Alps, Tuscany, Italy. It occurs as pseudo-hexagonal tabular crystals, yellowish to brownish in color, up to 0.5 mm in size. Cleavage is perfect on {0001}. It is associated with giacovazzoite, krausite, gypsum, jarosite, alum-(K), and magnanelliite. Electron microprobe analyses give (wt %): SO3 47.31, Al2O3 0.66, Fe2O3 24.68, FeO 0.69, Na2O 0.52, K2O 17.36, H2Ocalc 15.06, total 106.28. The partitioning of Fe between Fe2+ and Fe3+ was based on Mössbauer spectroscopy. On the basis of 67 O atoms per formula unit, the empirical chemical formula is (K7.50Na0.34)Σ7.84(Fe3+6.29Al0.26Fe2+0.20)Σ6.75S12.02O50·17H2O. The ideal end-member formula can be written as K8(Fe3+0.67□0.33)[Fe3+3O(SO4)6(H2O)3]2(H2O)11. Scordariite is trigonal, space group R-3, with (hexagonal setting) a = 9.7583(12), c = 53.687(7) Å, V = 4427.4(12) Å3, Z = 3. The main diffraction lines of the observed X-ray powder pattern are [d(in Å), estimated visual intensity]: 8.3, strong; 6.6, medium; 3.777, medium; 3.299, medium; 3.189, medium; 2.884, strong. The crystal structure of scordariite has been refined using X-ray single-crystal data to a final R1 = 0.057 on the basis of 1980 reflections with Fo > 4σ(Fo) and 165 refined parameters. It can be described as a layered structure formed by three kinds of layers. As with other metavoltine-related minerals, scordariite is characterized by the occurrence of the [Fe3+3O(SO4)6(H2O)3]5− heteropolyhedral cluster.


2012 ◽  
Vol 76 (3) ◽  
pp. 551-566 ◽  
Author(s):  
L. Bindi ◽  
R. T. Downs ◽  
P. G. Spry ◽  
W. W. Pinch ◽  
S. Menchetti

AbstractThe crystal structure and chemical composition of two samples of fettelite from the type locality, including a portion of the holotype material, was investigated to verify if a previously proposed revision of the chemical formula was applicable, and to study the role of cation substitution for Hg that would suggest new members of the fettelite family. The crystal structure of fettelite from the type locality was found to be equivalent to that reported previously for the Chilean occurrence, and consists of an alternation of two kinds of layers along c: layer A with general composition [Ag6As2S7]2– and layer B with general composition [Ag10HgAs2S8]2+. In this structure, the Ag atoms occur in various coordination configurations, varying from quasi-linear to quasi-tetrahedral, the AsS3 groups form pyramids as are typically observed in sulfosalts, and Hg links two sulfur atoms in a linear coordination. The refined compositions for the crystals in this study, [Ag6As2S7][Ag10(Fe0.53Hg0.47)As2S8] (R100124) and [Ag6As2S7][Ag10(Hg0.79Cu0.21)As2S8] (R110042), clearly indicate that new mineral species related to fettelite are likely to be found in nature.


2012 ◽  
Vol 76 (5) ◽  
pp. 1247-1255 ◽  
Author(s):  
R. W. Turner ◽  
O. I. Siidra ◽  
S. V. Krivovichev ◽  
C. J. Stanley ◽  
J. Spratt

AbstractRumseyite, ideally [Pb2OF]Cl, is a new mineral species which is associated with calcite, cerussite, diaboleite, hydrocerussite and undifferentiated Mn oxides in a small cavity in 'hydrocerussite' from a manganese pod at Merehead quarry, Somerset, England. Rumseyite is tetragonal, I4/mmm, a = 4.065(1), c = 12.631(7) Å, V = 208.7(1) Å3, Z = 2. The mineral is translucent pale orange-brown with a white streak and vitreous lustre. It is brittle with perfect {100} cleavage; Dcalc = 7.71 g cm–3 (for the ideal formula, [Pb2OF]Cl). The mean refractive index in air at 589 nm is 2.15. The six strongest reflections in the X-ray powder-diffraction pattern [dmeas in Å, (Irel), (hkl)] are as follows: 2.923(100)(013), 2.875(68)(110), 3.848(41)(011), 6.306(17)(002), 1.680(14)(123), 2.110(12)(006). The crystal structure of rumseyite is based on alternating [OFPb2] and Cl layers. Rumseyite is related to other layered Pb oxyhalides. Fluorine and oxygen are statistically disordered over one crystallographic site. Rumseyite is named in honour of Michael Scott (Mike) Rumsey (1980– ), Curator and Collections Manager at the NHM (London), who discovered the mineral. The mineral and name have been approved by the IMA Commission on New Mineral Names and Classification (IMA 2011-091). The holotype specimen is in the collections of the Natural History Museum, London (specimen number BM1970,110).


Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 960
Author(s):  
Philippe Roth ◽  
Nicolas Meisser ◽  
Fabrizio Nestola ◽  
Radek Škoda ◽  
Fernando Cámara ◽  
...  

The new mineral species rüdlingerite, ideally Mn2+2V5+As5+O7·2H2O, occurs in the Fianel mine, in Val Ferrera, Grisons, Switzerland, a small Alpine metamorphic Mn deposit. It is associated with ansermetite and Fe oxyhydroxide in thin fractures in Triassic dolomitic marbles. Rüdlingerite was also found in specimens recovered from the dump of the Valletta mine, Canosio, Cuneo, Piedmont, Italy, where it occurs together with massive braccoite and several other As- and V-rich phases in richly mineralized veins crossing the quartz-hematite ore. The new mineral displays at both localities yellow to orange, flattened elongated prismatic, euhedral crystals measuring up to 300 μm in length. Electron-microprobe analysis of rüdlingerite from Fianel gave (in wt%): MnO 36.84, FeO 0.06, As2O5, 25.32, V2O5 28.05, SiO2 0.13, H2Ocalc 9.51, total 99.91. On the basis of 9 O anions per formula unit, the chemical formula of rüdlingerite is Mn1.97(V5+1.17 As0.83Si0.01)Σ2.01O7·2H2O. The main diffraction lines are [dobs in Å (Iobs) hkl]: 3.048 (100) 022, 5.34 (80) 120, 2.730 (60) 231, 2.206 (60) 16-1, 7.28 (50) 020, 2.344 (50) 250, 6.88 (40) 110, and 2.452 (40) 320. Study of the crystal structure showcases a monoclinic unit cell, space group P21/n, with a = 7.8289(2) Å, b = 14.5673(4) Å, c = 6.7011(2) Å, β = 93.773(2)°, V = 762.58(4) Å3, Z = 4. The crystal structure has been solved and refined to R1 = 0.041 on the basis of 3784 reflections with Fo > 4σ(F). It shows Mn2+ hosted in chains of octahedra that are subparallel to [-101] and bound together by pairs of tetrahedra hosted by V5+ and As5+, building up a framework. Additional linkage is provided by hydrogen-bonding through H2O coordinating Mn2+ at the octahedra. One tetrahedrally coordinated site is dominated by V5+, T(1)(V0.88As0.12), corresponding to an observed site scattering of 24.20 electrons per site (eps), whereas the second site is strongly dominated by As5+,T(2)(As0.74V0.26), with, accordingly, a higher observed site scattering of 30.40 eps. The new mineral has been approved by the IMA-CNMNC and named for Gottfried Rüdlinger (born 1919), a pioneer in the 1960–1980s, in the search and study of the small minerals from the Alpine manganese mineral deposits of Grisons.


Minerals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 779 ◽  
Author(s):  
Cristian Biagioni ◽  
Luca Bindi ◽  
Anthony R. Kampf

The new mineral species magnanelliite, K3Fe3+2(SO4)4(OH)(H2O)2, was discovered in the Monte Arsiccio mine, Apuan Alps, Tuscany, Italy. It occurs as steeply terminated prisms, up to 0.5 mm in length, yellow to orange-yellow in color, with a vitreous luster. Streak is pale yellow, Mohs hardness is ca. 3, and cleavage is good on {010}, fair on {100}. The measured density is 2.82(3) g/cm3. Magnanelliite is optically biaxial (+), with α = 1.628(2), β = 1.637(2), γ = 1.665(2) (white light), 2Vmeas = 60(2)°, and 2Vcalc = 59.9°. It exhibits a strong dispersion, r > v. The optical orientation is Y = b, X ^ c ~ 25° in the obtuse angle β. It is pleochroic, with X = orange yellow, Y and Z = yellow. Magnanelliite is associated with alum-(K), giacovazzoite, gypsum, jarosite, krausite, melanterite, and scordariite. Electron microprobe analyses give (wt.%): SO3 47.82, TiO2 0.05, Al2O3 0.40, Fe2O3 25.21, MgO 0.07, Na2O 0.20, K2O 21.35, H2Ocalc 6.85, total 101.95. On the basis of 19 anions per formula unit, assuming the occurrence of one (OH)− and two H2O groups, the empirical chemical formula of magnanelliite is (K2.98Na0.04)Σ3.02(Fe3+2.08Al0.05Mg0.01)Σ2.14S3.93O16(OH)(H2O)2. The ideal end-member formula can be written as K3Fe3+2(SO4)4(OH)(H2O)2. Magnanelliite is monoclinic, space group C2/c, with a = 7.5491(3), b = 16.8652(6), c = 12.1574(4) Å, β = 94.064(1)°, V = 1543.95(10) Å3, Z = 4. Strongest diffraction lines of the observed X-ray powder pattern are [d(in Å), estimated visual intensity, hkl]: 6.9, medium, 021 and 110; 4.91, medium-weak, 022; 3.612, medium-weak, 1 ¯ 32, 023, and 1 ¯ 13; 3.085, strong, 202, 150, and 1 ¯ 33; 3.006, medium, 004, 1 ¯ 51, and 151; 2.704, medium, 152 and 2 ¯ 23; 2.597, medium-weak, 2 ¯ 42; 2.410, medium-weak, 153. The crystal structure of magnanelliite has been refined using X-ray single-crystal data to a final R1 = 0.025, on the basis of 2411 reflections with Fo > 4σ(Fo) and 144 refined parameters. The crystal structure is isotypic with that of alcaparrosaite, K3Ti4+Fe3+(SO)4O(H2O)2.


2016 ◽  
Vol 80 (5) ◽  
pp. 809-817 ◽  
Author(s):  
Dan Topa ◽  
Werner H. Paar ◽  
Emil Makovicky ◽  
Chris J. Stanley ◽  
Andy C. Roberts

AbstractOscarkempffite, ideally Ag10Pb4(Sb17Bi9)∑=26S48, is a new mineral species found in old material (1929–30) from the Colorada vein, Animas mine, Chocaya Province, Department of Potosi, Bolivia. It is associated with aramayoite, stannite, miargyrite, pyrargyrite and tetrahedrite. Oscarkempffite forms anhedral grains and grain aggregates up to 10 mm across. The mineral is opaque, greyish black with a metallic lustre; it is brittle without any discernible cleavage. In reflected light oscarkempffite is greyish white, pleochroism is distinct, white to dark grey. Internal reflections are absent. In crossed polars, anisotropism is distinct with rotation tints in shades of grey. The reflectance data (%, air) are: 39.9, 42.6 at 470 nm, 38.6, 41.7 at 546 nm, 38.1, 41.2 at 589 nm and 37.3, 40.6 at 650 nm. Mohs hardness is 3–3½, microhardness VHN50 exhibits a range 189–208, with a mean value 200 kg mm–2. The average results of four electron-microprobe analyses in a grain are: Cu 0.24(7), Ag 14.50(8), Pb 11.16(14), Sb 28.72(16), Bi 24.56(17), S 20.87(5), total 100.05(6) wt.%, corresponding to Cu0.24Ag9.92Pb4.00Sb17.36Bi8.64S47.84 (on the basis of Me + S = 88 apfu). The simplified formula, Ag10Pb4Sb17Bi9S48, is in accordance with the results of a crystal-structure determination. The density, 5.8 g cm–3, was calculated using the ideal formula. Oscarkempffite has an orthorhombic cell with a = 13.199(2), b = 19.332(3), c = 8.249(1) Å, V = 2116.3(5) Å3, space group Pnca and Z = 1. The strongest eight lines in the (calculated) powder-diffraction pattern are [d in Å(I)hkl]: 3.66(35)(122), 3.37(70)(132), 3.34(100)(250), 2.982(55)(312), 2.881(86)(322), 2.733(29)(332), 2.073(27)(004) and 2.062(31)(182). Comparison with gustavite, andorite and roshchinite confirms its independence as a mineral species.


2018 ◽  
Vol 74 (10) ◽  
pp. 1439-1443
Author(s):  
Sureemas Meksawangwong ◽  
Suwadee Jiajaroen ◽  
Kittipong Chainok ◽  
Waraporn Pinyo ◽  
Filip Kielar

The asymmetric unit of the title compound, fac-[Ir(C11H8N)2(C18H24N2)]Cl or fac-[Ir(ppy)2(Hppy-NC6)]Cl, contains two [Ir(ppy)2(ppy-NC6)](H+) cations, two Cl− anions and disordered solvent. In each complex molecule, the IrIII ion is coordinated by two C,N-bidentate 2-(pyridin-2-yl)phenyl ligands and one C,N-bidentate N-[4-(pyridin-2-yl)benzyl]hexan-1-aminium ligand, leading to a distorted fac-octahedral coordination environment. In the crystal, the molecules are linked by N—H...Cl, C—H...π and π–π interactions, forming a three-dimensional supramolecular structure. The hexyl group of one molecule is disordered over two orientations with a refined occupancy ratio of 0.412 (13):0.588 (13). The acetone and hexane solvent molecules were found to be highly disordered and their contribution to the scattering was masked using the solvent-masking routine smtbx.mask in OLEX2 [Rees et al. (2005). Acta Cryst. D61, 1299–1301]. These solvent molecules are not considered in the given chemical formula and other crystal data.


1993 ◽  
Vol 57 (386) ◽  
pp. 157-164 ◽  
Author(s):  
Mitsuyoshi Kimata

AbstractThe crystal structure of KBSi3O8 (orthorhombic, Pnam, with a = 8.683(1), b = 9.253(1), c = 8.272(1) Å,, V = 664.4(1) Å3, Z = 4) has been determined by the direct method applied to 3- dimensional rcflection data. The structure of a microcrystal with the dimensions 20 × 29 × 37 μm was refined to an unweightcd residual of R = 0.031 using 386 non-zero structure amplitudes. KBSi3O8 adopts a structure essentially different from recdmergneritc NaBSi3O8, with the low albite (NaAlSi3O8) structure, and isotypic with danburite CaB2Si2Os which has the same topology as paracelsian BaAl2Si2O8. The chenfical relationship between this sample and danburitc gives insight into a new coupled substitution; K+ + Si4+ = Ca2+ + B3+ in the extraframework and tetrahedral sites. The present occupancy refinement revealed partial disordering of B and Si atoms which jointly reside in two kinds of general equivalent points, T(1) and T(2) sites. Thus the expanded crystal-chemical formula can be written in the form K(B0.44Si0.56)2(B0.06Si0.94)2O8The systematic trend among crystalline compounds with the M+T3+T4+3O8 formula suggests that they exist in one of four structural types; the feldspar structures with T3+/T4+ ordered and/or disordered forms, and the paracelsian and the hollandite structures.


Sign in / Sign up

Export Citation Format

Share Document