The Great Barrier Reef Expedition 1928–29: The crystal structure and occurrence of weddellite, ideally CaC2O4·2.5H2O, from the Low Isles, Queensland

2016 ◽  
Vol 80 (2) ◽  
pp. 399-406 ◽  
Author(s):  
Stuart J. Mills ◽  
Andrew G. Christy

Abstract“Envelope crystals” collected during The Great Barrier Reef Expedition in May 1929 have been studied using low-temperature synchrotron single-crystal X-ray diffraction. The crystals are shown to be weddellite, with the largest content of zeolitic water reported to date. A new H2O site has been located within the crystal structure. Study of the crystals show that the end-member formula for weddellite should be reported as CaC2O4·(2.5 – x)H2O, where 0≤x≤ 0.25, instead of CaC2O4·(2H2O or CaC2O4·(2 + x )H2O. This is also the first report of weddellite occurring in a coral reef.

1997 ◽  
Vol 53 (1) ◽  
pp. 135-142 ◽  
Author(s):  
D. L. Corker ◽  
A. M. Glazer ◽  
J. Dec ◽  
K. Roleder ◽  
R. W. Whatmore

The crystal structure of the perovskite lead zirconate PbZrO3 has been redetermined using single-crystal X-ray diffraction (Mo Kα radiation, λ = 0.71069 Å). Single-crystal data at 100 K: space group. Pbam, a = 5.884 (1), b = 11.787 (3), c = 8.231 (2) Å, V = 570.85 Å3 with Z = 8, μ = 612.6 cm−1, D x = 8.06 Mg m−3, F(000) = 1168, final R = 0.033, wR = 0.061 over 555 reflections with I > 2σ(I). An investigation is made into previous contradicting reports of a possible disorder in the O atoms and their origin by examining the crystal pseudo-symmetry. Information distinguishing an ordered and disordered oxygen substructure is shown to reside in weak l odd reflections. Because of their extremely low intensities these reflections have not contributed sufficiently in previous X-ray structure investigations and hence, to date, conclusive evidence differentiating between ordered and disordered models has not been possible. By collecting single-crystal X-ray data at low temperature and by using exceptionally long scans on selected hkl, l odd, reflections, a new accurate structure determination is presented and discussed, showing the true ordered oxygen positions. Because of the large difference in scattering factors between lead and oxygen when using X-rays, a neutron diffraction Rietveld refinement using polycrystalline samples (D1A instrument, ILL, λ = 1.90788 Å) is also reported as further evidence to support the true ordered oxygen structure revealed by the low-temperature X-ray analysis.


1983 ◽  
Vol 38 (7) ◽  
pp. 830-834 ◽  

Abstract Single crystals of acetyltetralone grown from a solution containing a small amount of Cu(II) ions are studied by ESR. The corresponding g, 63Cu magnetic and quadrupolar hyperfine tensors are obtained and are consistent with the trapping of a square planar copper(II) complex. X-ray diffraction shows that pure acetyltetralone crystallizes in the orthorhombic space group Pbca (a - 8.893 Å, b = 20.301 Å, c = 10.715 Å). Comparison of the ESR eigenvectors with the bond directions obtained from this crystal structure study shows that the Cu(II) complex experiences some constraint from the crystal matrix. The present complex is a model for one of the complexation sites of tetracyclines.


Author(s):  
Süheyla Özbey ◽  
F. B. Kaynak ◽  
M. Toğrul ◽  
N. Demirel ◽  
H. Hoşgören

AbstractA new type of inclusion complex, S(–)-1 phenyl ethyl ammonium percholorate complex of R-(–)-2-ethyl - N - benzyl - 4, 7, 10, 13 - tetraoxa -1- azacyclopentadecane, has been prepared and studied by NMR, IR and single crystal X-ray diffraction techniques. The compound crystallizes in space group


2015 ◽  
Vol 71 (4) ◽  
pp. 330-337 ◽  
Author(s):  
Sabina Kovač ◽  
Ljiljana Karanović ◽  
Tamara Đorđević

Two isostructural diarsenates, SrZnAs2O7(strontium zinc diarsenate), (I), and BaCuAs2O7[barium copper(II) diarsenate], (II), have been synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction. The three-dimensional open-framework crystal structure consists of corner-sharingM2O5(M2 = Zn or Cu) square pyramids and diarsenate (As2O7) groups. Each As2O7group shares its five corners with five differentM2O5square pyramids. The resulting framework delimits two types of tunnels aligned parallel to the [010] and [100] directions where the large divalent nine-coordinatedM1 (M1 = Sr or Ba) cations are located. The geometrical characteristics of theM1O9,M2O5and As2O7groups of known isostructural diarsenates, adopting the general formulaM1IIM2IIAs2O7(M1II= Sr, Ba, Pb;M2II= Mg, Co, Cu, Zn) and crystallizing in the space groupP21/n, are presented and discussed.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 272
Author(s):  
Seungyeol Lee ◽  
Huifang Xu ◽  
Hongwu Xu ◽  
Joerg Neuefeind

The crystal structure of moganite from the Mogán formation on Gran Canaria has been re-investigated using high-resolution synchrotron X-ray diffraction (XRD) and X-ray/neutron pair distribution function (PDF) analyses. Our study for the first time reports the anisotropic atomic displacement parameters (ADPs) of a natural moganite. Rietveld analysis of synchrotron XRD data determined the crystal structure of moganite with the space group I2/a. The refined unit-cell parameters are a = 8.7363(8), b = 4.8688(5), c = 10.7203(9) Å, and β = 90.212(4)°. The ADPs of Si and O in moganite were obtained from X-ray and neutron PDF analyses. The shapes and orientations of the anisotropic ellipsoids determined from X-ray and neutron measurements are similar. The anisotropic ellipsoids for O extend along planes perpendicular to the Si-Si axis of corner-sharing SiO4 tetrahedra, suggesting precession-like movement. Neutron PDF result confirms the occurrence of OH over some of the tetrahedral sites. We postulate that moganite nanomineral is stable with respect to quartz in hypersaline water. The ADPs of moganite show a similar trend as those of quartz determined by single-crystal XRD. In short, the combined methods can provide high-quality structural parameters of moganite nanomineral, including its ADPs and extra OH position at the surface. This approach can be used as an alternative means for solving the structures of crystals that are not large enough for single-crystal XRD measurements, such as fine-grained and nanocrystalline minerals formed in various geological environments.


2020 ◽  
Vol 75 (8) ◽  
pp. 765-768
Author(s):  
Bohdana Belan ◽  
Dorota Kowalska ◽  
Mariya Dzevenko ◽  
Mykola Manyako ◽  
Roman Gladyshevskii

AbstractThe crystal structure of the phase Ce5AgxGe4−x (x = 0.1−1.08) has been determined using single-crystal X-ray diffraction data for Ce5Ag0.1Ge3.9. This phase is isotypic with Sm5Ge4: space group Pnma (No. 62), Pearson code oP36, Z = 4, a = 7.9632(2), b = 15.2693(5), c = 8.0803(2) Å; R1 = 0.0261, wR2 = 0.0460, 1428 F2 values and 48 variables. The two crystallographic positions 8d and 4c show Ge/Ag mixing, leading to a slight increase in the lattice parameters as compared to those of the pure binary compound Ce5Ge4.


2010 ◽  
Vol 95 (4) ◽  
pp. 655-658 ◽  
Author(s):  
S. Nazzareni ◽  
P. Comodi ◽  
L. Bindi ◽  
L. Dubrovinsky

2017 ◽  
Vol 81 (4) ◽  
pp. 917-922
Author(s):  
Peter Elliott

AbstractThe crystal structure of the copper aluminium phosphate mineral sieleckiite, Cu3Al4(PO4)2 (OH)12·2H2O, from the Mt Oxide copper mine, Queensland, Australia was solved from single-crystal X-ray diffraction data utilizing synchrotron radiation. Sieleckiite has monoclinic rather than triclinic symmetry as previously reported and is space group C2/m with unit-cell parameters a = 11.711(2), b = 6.9233(14), c = 9.828(2) Å, β = 92.88(3)°, V = 795.8(3) Å3and Z = 2. The crystal structure, which has been refined to R1 = 0.0456 on the basis of 1186 unique reflections with Fo > 4σF, is a framework of corner-, edge- and face- sharing Cu and Al octahedra and PO4 tetrahedra.


Sign in / Sign up

Export Citation Format

Share Document