scholarly journals An investigation of polyhedral deformation in two mixed-metal diarsenates: SrZnAs2O7and BaCuAs2O7

2015 ◽  
Vol 71 (4) ◽  
pp. 330-337 ◽  
Author(s):  
Sabina Kovač ◽  
Ljiljana Karanović ◽  
Tamara Đorđević

Two isostructural diarsenates, SrZnAs2O7(strontium zinc diarsenate), (I), and BaCuAs2O7[barium copper(II) diarsenate], (II), have been synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction. The three-dimensional open-framework crystal structure consists of corner-sharingM2O5(M2 = Zn or Cu) square pyramids and diarsenate (As2O7) groups. Each As2O7group shares its five corners with five differentM2O5square pyramids. The resulting framework delimits two types of tunnels aligned parallel to the [010] and [100] directions where the large divalent nine-coordinatedM1 (M1 = Sr or Ba) cations are located. The geometrical characteristics of theM1O9,M2O5and As2O7groups of known isostructural diarsenates, adopting the general formulaM1IIM2IIAs2O7(M1II= Sr, Ba, Pb;M2II= Mg, Co, Cu, Zn) and crystallizing in the space groupP21/n, are presented and discussed.

2014 ◽  
Vol 70 (a1) ◽  
pp. C1138-C1138
Author(s):  
Chiaki Tsuboi ◽  
Kazuki Aburaya ◽  
Shingo Higuchi ◽  
Fumiko Kimura ◽  
Masataka Maeyama ◽  
...  

We have developed magnetically oriented microcrystal array (MOMA) technique that enables single crystal X-ray diffraction analyses from microcrystalline powder. In this method, microcrystals suspended in a UV-curable monomer matrix are there-dimensionally aligned by special rotating magnetic field, followed by consolidation of the matrix by photopolymerization. From thus achieved MOMAs, we have been succeeded in crystal structure analysis for some substances [1, 2]. Though MOMA method is an effective technique, it has some problems as follows: in a MOMA, the alignment is deteriorated during the consolidation process. In addition, the sample microcrystals cannot be recovered from a MOMA. To overcome these problems, we performed an in-situ X-ray diffraction measurement using a three-dimensional magnetically oriented microcrystal suspension (3D MOMS) of L-alanine. An experimental setting of the in-situ X-ray measurement of MOMS is schematically shown in the figure. L-alanine microcrystal suspension was poured into a glass capillary and placed on the rotating unit equipped with a pair of neodymium magnets. Rotating X-ray chopper with 10°-slits was placed between the collimator and the suspension. By using this chopper, it was possible to expose the X-ray only when the rotating MOMS makes a specific direction with respect to the impinging X-ray. This has the same effect as the omega oscillation in conventional single crystal measurement. A total of 22 XRD images of 10° increments from 0° to 220° were obtained. The data set was processed by using conventional software to obtain three-dimensional molecular structure of L-alanine. The structure is in good agreement with that reported for the single crystal. R1 and wR2 were 6.53 and 17.4 %, respectively. RMSD value between the determined molecular structure and the reported one was 0.0045 Å. From this result, we conclude that this method can be effective and practical to be used widely for crystal structure analyses.


2014 ◽  
Vol 1 (3) ◽  
pp. 278-283 ◽  
Author(s):  
Shiliang Huang ◽  
Jie Su ◽  
Kirsten Christensen ◽  
A. Ken Inge ◽  
Jie Liang ◽  
...  

An open-framework germanate SU-79 was synthesized using nickel complex and amine as the templates. The crystal structure was solved by the combination of rotation electron diffraction (RED) and synchrotron single crystal X-ray diffraction.


2005 ◽  
Vol 58 (2) ◽  
pp. 115 ◽  
Author(s):  
Chun-Long Chen ◽  
Qian Zhang ◽  
Ji-Jun Jiang ◽  
Qin Wang ◽  
Cheng-Yong Su

The reaction of AgCF3CO2 with nitrilotriacetate (NTA) yields the three-dimensional silver(i) coordination polymer {Ag3[N(CH2COO)3]}n 1 which was characterized by means of elemental analysis and IR spectroscopy as well as X-ray diffraction. The single crystal structure shows that the NTA3– anions act as unusual heptadentate 13-coordination agents and the silver(i) atoms exhibit various coordination numbers in the range 3–6.


1975 ◽  
Vol 40 (312) ◽  
pp. 357-361 ◽  
Author(s):  
L. Fanfani ◽  
A. Nunzi ◽  
P. F. Zanazzi ◽  
A. R. Zanzari

SummaryThe crystal structure of galeite from Searles Lake (California) has been determined by means of X-ray diffraction data on a single crystal. A possible structure was derived from that of schairerite on the basis of chemical and lattice analogies and was confirmed by comparison of the observed diffractometric structure factors with the calculated ones. The refinement was performed by least-squares methods employing isotropic thermal parameters and assuming that atoms related by translational pseudosymmetry exhibit equal thermal parameters. The final R value is 0·09. The cell content is 3[Na15(SO4)5F4Cl]; the space group is P31m The lattice dimensions are a 12·197(4)Å, c 13·955(10) Å The marked subcell has P3m1 symmetry and a 7·042Å, c 13·955 Å. The crystal structure of galeite consists of a three-dimensional framework, formed by coordination octahedra around Na+ ions, including tetrahedral holes with sulphur atoms at the centres. The three-dimensional framework can be considered built up by five octahedral sheets (seven sheets can be recognized in schairerite and six in sulphohalite). The very close analogies occurring in the structures of galeite and schairerite are discussed.


2017 ◽  
Vol 73 (5) ◽  
pp. 399-406 ◽  
Author(s):  
Olga Carolina Sanchez Montilva ◽  
Federico Movilla ◽  
Maricel Gabriela Rodriguez ◽  
Florencia Di Salvo

Despite the large number of reported crystalline structures of coordination complexes bearing pyridines as ligands, the relevance of π–π interactions among these hereroaromatic systems in the stabilization of their supramolecular structures and properties is not very well documented in the recent literature. The title compound, [CoCl2(C5H6N2)2], was obtained as bright-blue crystals suitable for single-crystal X-ray diffraction analysis from the reaction of 4-aminopyridine with cobalt(II) chloride in ethanol. The new complex was fully characterized by a variety of spectroscopic techniques and single-crystal X-ray diffraction. The crystal structure showed a tetrahedral complex stabilized mainly by bidimensional motifs constructed by π–π interactions with large horizontal displacements between the 4-aminopyridine units, and N—H...Cl hydrogen bonds. Other short contacts, such as C—H...Cl interactions, complete the three-dimensional arrangement. The supramolecular investigation was extended by statistical studies using the Cambridge Structural Database and a Hirshfeld surface analysis.


1979 ◽  
Vol 32 (12) ◽  
pp. 2757 ◽  
Author(s):  
CL Raston ◽  
B Walter ◽  
AH White

The title compound, [C5H6N]+ [Cu2(SCN)3]-, has been prepared and its crystal structure determined by single-crystal X-ray diffraction at 295(1) K. Crystals are monoclinic, Cc, a 11.238(7), b 11.644(4), c 10.020(4)Ǻ, β 102.67(3)°, Z 4, the structure being refined to a residual of 0.037 for the 960 'observed' reflections. The structure comprises a three-dimensional network of copper(I) atoms linked by bridging thiocyanate groups, the pyridinium counterions occupying sites in the network cavities. Both copper atoms are four-coordinate, one having an environment of one nitrogen atom [Cu-N, 1.926(9)Ǻ] and three sulfur atoms [Cu-S, 2.319(3), 2.421(3), 2.448(3)Ǻ], while the other is coordinated by two atoms of each type [Cu-N, 1.935(9), 1.947(10); Cu-S, 2.430(3), 2.493(4) Ǻ].


2007 ◽  
Vol 62 (12) ◽  
pp. 1530-1534
Author(s):  
Enrique J. Baran ◽  
Oscar E. Piro ◽  
Juan Zinczuk

The crystal structure of hexamethylenediammonium bis(thiosaccharinate) dihydrate, [H3N-(CH2)6-NH3](tsac)2 · 2H2O (tsac=C7H4NO2S2, the anion of thiosaccharin), was determined by single-crystal X-ray diffraction. It crystallizes in the monoclinic space group P21/a with Z = 4. The thiosaccharinate moiety is planar and shows small but significant modifications in the bonding of the thioamide functional group as compared with the protonated neutral molecule. The ionic crystal is further stabilized by an extensive H-bonding network, which links the anions and cations into an infinite three-dimensional supramolecular assembly. The FTIR spectrum of the compound is briefly discussed in comparison with those of the neutral constituent molecules.


2013 ◽  
Vol 69 (2) ◽  
pp. i8-i9 ◽  
Author(s):  
Benjamin N. Schumer ◽  
Robert T. Downs ◽  
Kenneth J. Domanik ◽  
Marcelo B Andrade ◽  
Marcus J. Origlieri

Pirquitasite, ideally Ag2ZnSnS4(disilver zinc tin tetrasulfide), exhibits tetragonal symmetry and is a member of the stannite group that has the general formulaA2BCX4, withA= Ag, Cu;B= Zn, Cd, Fe, Cu, Hg;C= Sn, Ge, Sb, As; andX= S, Se. In this study, single-crystal X-ray diffraction data are used to determine the structure of pirquitasite from a twinned crystal from the type locality, the Pirquitas deposit, Jujuy Province, Argentina, with anisotropic displacement parameters for all atoms, and a measured composition of (Ag1.87Cu0.13)(Zn0.61Fe0.36Cd0.03)SnS4. One Ag atom is located on Wyckoff site Wyckoff 2a(symmetry -4..), the other Ag atom is statistically disordered with minor amounts of Cu and is located on 2c(-4..), the (Zn, Fe, Cd) site on 2d(-4..), Sn on 2b(-4..), and S on general site 8g. This is the first determination of the crystal structure of pirquitasite, and our data indicate that the space group of pirquitasite isI-4, rather thanI-42mas previously suggested. The structure was refined under consideration of twinning by inversion [twin ratio of the components 0.91 (6):0.09 (6)].


1972 ◽  
Vol 50 (8) ◽  
pp. 1134-1143 ◽  
Author(s):  
G. Kemper ◽  
Aafje Vos ◽  
H. M. Rietveld

The crystal structure of KIO3•HIO3 has been determined by three-dimensional single crystal X-ray diffraction and by neutron powder diffraction. The crystallographic data are a = 7.025(2), b = 8.206(2), c = 21.839(5) Å, β = 97.98(2)°, space group P21/c, Z = 8 units KIO3•HIO3. The residual [Formula: see text] was 0.048 for 7516 independent X-ray reflections measured on a three-circle diffractometer with Zr-filtered Mo radiation. The results of the present study show good qualitative agreement with the structure recently determined by Chan and Einstein (7). The HIO3 and [Formula: see text] groups are pyramidal, the I—O(H) bonds vary from 1.898 to 1.939(4) Å and the I—O bonds from 1.786 to 1.827(4) Å, these lengths are not corrected for the effects of thermal motion. Strong O—I … O interactions and electrostatic attractions between K+ and Oδ− give slabs of thickness [Formula: see text] The slabs are connected by hydrogen bonds of 2.710 and 2.694 Å.


2006 ◽  
Vol 62 (7) ◽  
pp. i143-i144 ◽  
Author(s):  
Lin Chen ◽  
Bo-Lin Wu ◽  
Xiao-Yi He ◽  
Jin-Xiao Mi

The crystal structure of monoclinic tripotassium indium(III) hexachloride, K3[InCl6], obtained by the solvent evaporation method, has been determined from single-crystal X-ray diffraction data. The crystal structure is characterized by isolated [InCl6] octahedra located in the centre of the cell and at the centre of each of the edges of the cell, linked with K+ cations to form a three-dimensional structure.


Sign in / Sign up

Export Citation Format

Share Document