Cation order in the crystal structure of ‘minasgeraisite-(Y)’

2018 ◽  
Vol 82 (2) ◽  
pp. 301-312 ◽  
Author(s):  
Mark A. Cooper ◽  
Frank C. Hawthorne

AbstractThe crystal structure of ‘minasgeraisite-(Y)’, triclinic P1, a = 9.994(4), b = 7.705(3), c = 4.764(2) Å, α = 90.042(9), β = 90.218(14), γ = 90.034(9) (°), V = 366.8(5) Å3 and Z = 1, has been refined to an R1 index of 2.86% for 4170 observed (|Fo| > 4σF) reflections. Significant observed (|Fo| > 40–60 σF) reflections violate the presence of a 21-screw axis and an a-glide plane, negating the space group P21/a previously found for minerals of the gadolinite–datolite group. Averaging of the X-ray data in Laue groups 2/m and $\bar 1$ gives the following agreement indices: 2/m (9.68%) and $\bar 1$ (5.68%). The internal agreement index from averaging of identical reflections collected at multiple positions along the diffraction vector is significantly lower than that for the Laue group $\bar 1$: Rpsi = 2.40%, where 13,109 reflections were collected, 4288 are unique for P1 symmetry, and Rpsi is based on a mean data redundancy factor of > 3. Both the data merging and an |E2–1| value of 0.773 indicate that P1 is the correct space group. The general formula for the gadolinite–datolite group is W2XZ2T2O8V2 (Z = 2) which we have expanded to 20 anions (Z = 1) to show the W-site cation ordering present in ‘minasgeraisite-(Y)’. Bismuth, Ca and REE are ordered over four W sites, with Bi dominant at W1, Ca dominant at W2, and Y dominant at W3 and W4. The dominant constituent at the X sites is a vacancy, and Ca does not occur at the X sites. Significant B and Si are assigned to the Be-dominant Z sites, and the T sites are occupied by Si. The simplified ‘minasgeraisite-(Y)’ formula (Z = 1) is BiCa(Y,Ln)2(□,Mn)2(Be,B,Si)4Si4O16 [(OH),O]4. ‘Minasgeraisite-(Y)’ should be assigned to a triclinic subgroup of the gadolinite–datolite group, and its lower symmetry suggests that Ca-substituted gadolinites and hingganites should be examined for evidence of triclinic symmetry associated with cation order at the W sites.

Author(s):  
Süheyla Özbey ◽  
F. B. Kaynak ◽  
M. Toğrul ◽  
N. Demirel ◽  
H. Hoşgören

AbstractA new type of inclusion complex, S(–)-1 phenyl ethyl ammonium percholorate complex of R-(–)-2-ethyl - N - benzyl - 4, 7, 10, 13 - tetraoxa -1- azacyclopentadecane, has been prepared and studied by NMR, IR and single crystal X-ray diffraction techniques. The compound crystallizes in space group


1981 ◽  
Vol 36 (10) ◽  
pp. 1208-1210 ◽  
Author(s):  
Hartmut Köpf ◽  
Joachim Pickardt

Abstract The molecular structure of the bridged [1]-titanocenophane 1,1'-dimethylsilylene titanocene dichloride, (CH3)2Si(C5H4)2TiCl2, has been investigated by an X-ray structure determination. Crystal data: monoclinic, space group C2/c, Z = 4, a = 1332.9(3), 6 = 988.7(3), c = 1068.9(3) pm, β = 113.43(2)°. The results are compared with the structural dimensions of similar compounds: 1,1'-methylene titanocene dichloride, CH2(C5H4)TiCl2, with the unbridged titanocene dichloride, (C5H5)2TiCl2 and the ethylene-bridged compound (CH2)2(C5H4)2TiCl2


1985 ◽  
Vol 63 (6) ◽  
pp. 1166-1169 ◽  
Author(s):  
John F. Richardson ◽  
Ted S. Sorensen

The molecular structures of exo-7-methylbicyclo[3.3.1]nonan-3-one, 3, and the endo-7-methyl isomer, 4, have been determined using X-ray-diffraction techniques. Compound 3 crystallizes in the space group [Formula: see text] with a = 15.115(1), c = 7.677(2) Å, and Z = 8 while 4 crystallizes in the space group P21 with a = 6.446(1), b = 7.831(1), c = 8.414(2) Å, β = 94.42(2)°, and Z = 2. The structures were solved by direct methods and refined to final agreement factors of R = 0.041 and R = 0.034 for 3 and 4 respectively. Compound 3 exists in a chair–chair conformation and there is no significant flattening of the chair rings. However, in 4, the non-ketone ring is forced into a boat conformation. These results are significant in interpreting what conformations may be present in the related sp2-hybridized carbocations.


2020 ◽  
Vol 75 (8) ◽  
pp. 765-768
Author(s):  
Bohdana Belan ◽  
Dorota Kowalska ◽  
Mariya Dzevenko ◽  
Mykola Manyako ◽  
Roman Gladyshevskii

AbstractThe crystal structure of the phase Ce5AgxGe4−x (x = 0.1−1.08) has been determined using single-crystal X-ray diffraction data for Ce5Ag0.1Ge3.9. This phase is isotypic with Sm5Ge4: space group Pnma (No. 62), Pearson code oP36, Z = 4, a = 7.9632(2), b = 15.2693(5), c = 8.0803(2) Å; R1 = 0.0261, wR2 = 0.0460, 1428 F2 values and 48 variables. The two crystallographic positions 8d and 4c show Ge/Ag mixing, leading to a slight increase in the lattice parameters as compared to those of the pure binary compound Ce5Ge4.


Author(s):  
Matthew Wilding ◽  
Colin Scott ◽  
Thomas S. Peat ◽  
Janet Newman

The NAD-dependent malonate-semialdehyde dehydrogenase KES23460 fromPseudomonassp. strain AAC makes up half of a bicistronic operon responsible for β-alanine catabolism to produce acetyl-CoA. The KES23460 protein has been heterologously expressed, purified and used to generate crystals suitable for X-ray diffraction studies. The crystals belonged to space groupP212121and diffracted X-rays to beyond 3 Å resolution using the microfocus beamline of the Australian Synchrotron. The structure was solved using molecular replacement, with a monomer from PDB entry 4zz7 as the search model.


2017 ◽  
Vol 72 (12) ◽  
pp. 983-988 ◽  
Author(s):  
Martin K. Schmitt ◽  
Hubert Huppertz

Abstractβ-Y(BO2)3 was synthesized in a Walker-type multianvil module at 5.9 GPa/1000°C. The crystal structure has been elucidated through single-crystal X-ray diffraction. β-Y(BO2)3 crystallizes in the orthorhombic space group Pnma (no. 62) with the lattice parameters a=15.886(2), b=7.3860(6), and c=12.2119(9) Å. Its crystal structure will be discussed in the context of the isotypic lanthanide borates β-Ln(BO2)3 (Ln=Nd, Sm, Gd–Lu).


1983 ◽  
Vol 36 (11) ◽  
pp. 2333 ◽  
Author(s):  
B Kamenar ◽  
RA Pauptit ◽  
JM Waters

The X-ray crystal structure of 3α,4α:5β,6β-diepoxyandrostan-17-one has been determined. Crystals of the title compound (C19H26O3)are monoclinic, space group P21, with a 9.208(2), b 9.620(4), c 9.312(3) �, β 99.14(2)�, V 814.5 Ǻ3 and Z 2. The structure was solved by direct methods and refined to R 0.039 for 887 observed reflexions. The 3α,4α:5β,6β configuration of the epoxide rings confirms the assignment based on proton n.m.r. studies.


1993 ◽  
Vol 48 (12) ◽  
pp. 1727-1731 ◽  
Author(s):  
A. Franken ◽  
W. Preetz ◽  
M. Rath ◽  
K.-F. Hesse

By electrochemical oxidation of [B6H6]2- in the presence of nitrite ions and the base DBU in dichloromethane solution mononitropentahydrohexaborate [B6H5(NO2)]2- ions are formed and can be isolated by ion exchange chromatography on diethylaminoethyl cellulose. The crystal structures of the K and Cs salt were determined from single crystal X-ray diffraction analyses. K2[B6H5(NO2)] is monoclinic, space group P21/m with a = 5.953(1), b = 8.059(4), c = 8.906(1) Å, β = 109.553(9)°; Cs2[B6H5(NO2)] is monoclinic, space group P21/a with a = 9.438(6), b = 9.644(7), c = 11.138(9) Å, β = 101.44(9)°. The B6 octahedron is compressed in the direction of the B—NO2 bond by about 5%, with bond lengths between 1.67 and 1.77 A.


2006 ◽  
Vol 61 (6) ◽  
pp. 699-707 ◽  
Author(s):  
Daniela John ◽  
Alexander Rohde ◽  
Werner Urland

The gadolinium(III) trifluoroacetates ((CH3)2NH2)[Gd(CF3COO)4] (1), ((CH3)3NH)[Gd(CF3 COO)4(H2O)] (2), Gd(CF3COO)3(H2O)3 (3) as well as Gd2(CF3COO)6(H2O)2(phen)3 · C2H5OH (4) (phen = 1,10-phenanthroline) were synthesized and structurally characterized by X-ray crystallography. These compounds crystallize in the space group P1̅ (No. 2, Z = 2) (1, 2 and 4) and P 21/c (No. 14, Z = 4) (3), respectively, with the following lattice constants 1: a = 884.9(2), b = 1024.9(2), c = 1173.1(2) pm, α = 105.77(2), β = 99.51(2), γ = 107.93(2)°; 2: a = 965.1(1), b = 1028.6(1), c = 1271.3(2) pm, α = 111.83(2), β = 111.33(2), γ = 90.44(2)°; 3: a = 919.6(2), b = 1890.6(4), c = 978.7(2) pm, β = 113.94(2)°; 4: a = 1286.7(8), b = 1639.3(8), c = 1712.2(9) pm, α = 62.57(6), β = 84.13(5), γ = 68.28(5)°. The compounds consist of Gd3+ ions which are bridged by carboxylate groups either to chains (1 and 2) or to dimers (3 and 4). In addition to the Gd3+ dimers, compound (4) also contains monomeric Gd3+ units. The magnetic behaviour of 2 and 3 was investigated in a temperature range of 1.77 to 300 K. The magnetic data for these compounds indicate weak antiferromagnetic interactions


1964 ◽  
Vol 42 (10) ◽  
pp. 1886-1889 ◽  
Author(s):  
B. Swaroop ◽  
S. N. Flengas

The crystal structure of zirconium trichloride was determined from X-ray diffraction patterns. Zirconium trichloride belongs to the [Formula: see text]space group. The dimensions of the main cell at room temperature are: a = 5.961 ± 0.005 Å and c = 9.669 ± 0.005 Å.The density of zirconium trichloride was measured and gave the value of 2.281 ± 0.075 g/cm3 while, from the X-ray calculations, the value was found to be 2.205 g/cm3.


Sign in / Sign up

Export Citation Format

Share Document