Secondary Iron Overload

Hematology ◽  
2001 ◽  
Vol 2001 (1) ◽  
pp. 47-61 ◽  
Author(s):  
James P. Kushner ◽  
John P. Porter ◽  
Nancy F. Olivieri

Abstract Transfusion therapy for inherited anemias and acquired refractory anemias both improves the quality of life and prolongs survival. A consequence of chronic transfusion therapy is secondary iron overload, which adversely affects the function of the heart, the liver and other organs. This session will review the use of iron chelating agents in the management of transfusion-induced secondary iron overload. In Section I Dr. John Porter describes techniques for the administration of deferoxamine that exploit the pharmacokinetic properties of the drug and minimize potential toxic side effects. The experience with chelation therapy in patients with thalassemia and sickle cell disease will be reviewed and guidelines will be suggested for chelation therapy of chronically transfused adults with refractory anemias. In Section II Dr. Nancy Olivieri examines the clinical consequences of transfusion-induced secondary iron overload and suggests criteria useful in determining the optimal timing of the initiation of chelation therapy. Finally, Dr. Olivieri discusses the clinical trials evaluating orally administered iron chelators.

2004 ◽  
Vol 2004 (3) ◽  
pp. 646-652 ◽  
Author(s):  
Beatrice Arezzini ◽  
Marco Ferrali ◽  
Erika Ferrari ◽  
Romano Grandi ◽  
Stefano Monti ◽  
...  

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4850-4850
Author(s):  
Mansi Lalwani ◽  
Mary DeBarr ◽  
Ann O'Riordan Mary ◽  
Connie M Piccone ◽  
Brian W Berman

Abstract Abstract 4850 Introduction: Nearly 100,000 Americans are affected by sickle cell disease (SCD), making it one of the most prevalent genetic disorders in the United States. Individuals with SCD exhibit significant morbidity and mortality related to chronic hemolysis, vasculopathy, and vascular occlusion by red cell sickling. Currently, red cell transfusions are a primary therapy for some of the acute and chronic complications of SCD, including prevention and treatment of stroke. The benefits of transfusion therapy are well known; however, transfusional iron overload is an inevitable consequence. Excess iron in the circulation leads to the formation of reactive oxygen species which ultimately causes end-organ damage. It is well established that adult SCD patients with significant iron overload have a higher mortality. As a result, exchange transfusion protocols are utilized to try to decrease overall iron overload. In our center, a modified manual exchange (MME) protocol is used which involves therapeutic phlebotomy of approximately 5–7.5ml/kg followed by the infusion of 15–20ml/kg packed red blood cells. MME is performed in the outpatient setting every 4–6 weeks with a goal hemoglobin S of less than 30%. Objective: The primary objective of our study was to describe the benefits of a MME protocol compared with a simple transfusion protocol in patients experiencing both. The effects of MME versus simple tranfusion on systemic iron overload were evaluated using serum ferritin levels, net transfusion volume, and need for iron chelation therapy. Study Design/Methods: A retrospective chart review was performed on patients with SCD (type SS) less than 18 years of age who were on chronic transfusions and transitioned from a simple to a MME protocol. All patients included were on chronic transfusions for primary/secondary stroke prevention. Exclusion criteria included all patients on automated exchange transfusion protocols and those patients who started iron chelation therapy after January 1, 2008. Demographic as well as clinical and laboratory data were collected on each patient. A simple transfusion was defined as 20ml/kg packed red blood cells transfused every 4–6 weeks. The MME protocol was defined as above. Iron overload was assessed using indicators including net volume of blood transfused, serum ferritin, and the need for iron chelation during both time periods, and differences were calculated. The Wilcoxon signed rank test was used for the change in amount of blood transfused. Slopes of ferritin levels over time were estimated for each transfusion protocol separately using mixed model methods. The need for chelation therapy was tabulated for each patient. Results: A total of six patients were included in the study, 4 boys and 2 girls. Ages ranged from 6–14 years. Four patients had been on chronic transfusions for more than 2 years prior to the start of our study. The mean net volume transfused during simple transfusion and MME was 400ml and 290ml, respectively (p=0.03). The slope of ferritin rise was 0.18 (CI: 0.11, 0.84) for MME and 1.37 (CI: 0.56, 2.17) for simple transfusion. One patient was taken off chelation therapy completely after transitioning to MME and another patient was maintained on low-dose chelation while on MME. Conclusions: MME appears to reduce the amount of blood transfused, slow the rise of ferritin, and potentially reduce the need for additional medication. MME may provide a safe and cost effective approach for delaying or preventing iron overload in patients with sickle cell disease who require long term transfusion therapy. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2233-2233 ◽  
Author(s):  
Ashutosh Lal ◽  
Sujit Sheth ◽  
Sandra Gilbert ◽  
Janet L. Kwiatkowski

Abstract Background: The prevalence of thalassemia in the US is rising due to migration, new births, and improved survival. Advances in monitoring and treatment have significantly reduced morbidity and mortality in transfusion-dependent thalassemia (TDT), the most severe form of this inherited disease. Thalassemia Treatment Centers (TTCs) utilize a comprehensive care model to provide expert-recommended and evidence-informed treatment, but a majority of the patients with TDT are not managed at such centers owing to long travel distance and lack of insurance portability. The resulting lack of access to specialized care increases the risk of complications and reduces health-related quality of life. To address this challenge, a national project was launched to develop Thalassemia Management Checklists (TMCs), a set of quick reference guides that provide decision support to physicians for blood transfusion, iron overload and chelation therapy. Methods: Three TTC's (New York, NY, Philadelphia, PA, and Oakland, CA) collaborated on the development of the following TMCs: (1) Guidelines for Managing Transfusion therapy for Thalassemia, (2) Monitoring of Iron Overload, and (3) Monitoring Deferasirox Therapy. A comprehensive review of literature including over 600 published studies and case reports, as well as the existing expert guidelines was conducted. Utilizing relevant references, the clinical guidelines were developed and a consensus on content and design of the Checklists was achieved. Subsequently, feedback obtained from national experts and patients with thalassemia was incorporated into the final Checklists. Results: Each Checklist was divided into three sections and formatted as a quick reference guide. Part 1 was a summary table having essential information printed on one side of letter-sized paper. For transfusion therapy, the table contained actions to be triggered by the pre-transfusion hemoglobin level. For iron overload, the optimal and elevated liver and cardiac iron concentration were defined along with the frequency of iron measurement using MRI. For monitoring of deferasirox, the monitoring guidelines for adverse effects and the response to abnormal laboratory tests were presented. Part 2 consisted of a literature review and rationale for the recommendations presented in the table, which was printed on the opposite face of the page. Part 3 was a bibliography of publications cited in the literature review that was made available online with a link provided in the TMC. The final product was three separate pages each covering a single topic, allowing easy access to the summary information while displaying detailed information on demand. The TMCs were distributed as printed copies to hematologists and can be downloaded from thalassemia-related websites. Discussion: The TTC's involved with this effort recognized that physicians providing care to only a few patients with TDT within general hematology (or more commonly oncology) -focused practices are far more likely to consult a desktop quick reference guide instead of a textbook, journal or handbook of comprehensive guidelines. TMCs are expected to cover most of the routine management of TDT while encouraging consultation with TTC's for complex decisions. TMCs will form the backbone of the first national attempt to standardize the management of TDT and reduce disparities in access to and quality of care. Over the next 3 years, the adoption of TMCs and their impact on patient care will be formally evaluated in selected regions. Patient access to TMCs through online publication will increase knowledge and promote self-advocacy. We are grateful to Craig Butler and Cooley's Anemia Foundation for coordinating this project. This project is/was supported by the Health Resources and Services Administration (HRSA) of the U.S. Department of Health and Human Services (HHS) under grant number U1AMC28548: Cooperative Agreements to Support Comprehensive Medical Care for Thalassemia with no funds from non-governmental sources. This information or content and conclusions are those of the author and should not be construed as the official position or policy of, nor should any endorsements be inferred by HRSA, HHS or the U.S. Government. Disclosures Lal: Insight Magnetics: Research Funding; La Jolla Pharmaceutical Company: Consultancy, Research Funding; Novartis: Research Funding; Bluebird Bio: Research Funding; Terumo Corporation: Research Funding; Celgene Corporation: Research Funding. Sheth:Terumo Corporation: Research Funding; Novartis: Research Funding; La Jolla Pharmaceutical Company: Research Funding; Celgene Corporation: Consultancy, Research Funding; Bluebird Bio: Consultancy. Kwiatkowski:Novartis: Research Funding; Apopharma: Research Funding; bluebird bio: Consultancy, Honoraria, Research Funding; Terumo: Research Funding; Agios Pharmaceuticals: Consultancy, Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5026-5026
Author(s):  
Norma C Lopez-Santiago ◽  
Rogelio a Paredes Aguilera ◽  
Angelica Cecilia Monsivais Orozco ◽  
Maria De Lourdes Gonzalez Pedroza ◽  
Gabriela Tavera Rodriguez ◽  
...  

Refractory severe aplastic anemia (RSAA) has poor prognosis. Eltrombopag is a therapeutic option in patients that failed to ATG+CyA; in countries with poor outcomes their use is limited. Described experience with low doses of Eltrombopag 25mg/d. CASE 1. Female 4 yo diagnosis SAA not responded after 2 cycles ATG, the first one with mesterolone for 6 months, continued pancytopenic with multiple transfusions (every 2/3 weeks) complicated by iron overload, and serious infections; presented CNS infection with secondary spastic paralysis, due chelation therapy development 2 cholestasis outbreak. Eltrombopag was started 25mg/d, after the first month, no more transfusion was needed with increase of neutrophils and platelet counts. After 7 months Eltrombopag for economic reasons was stopped with partial response. Hb >10g/dL, CAN >1000 m3 & platelets 99 X103. For 4 years; until now; she is doing well, no infections and no transfusions needed. CASE 2. Male 2 yo, SAA not responded ATG course, he was inpatient during 8 months with multiple infections, bleeding complications and consequence transfusion was needed. Iron overload required iron chelation therapy, the medical orders and CyA was irregularly administrated, the parents not accept considered BMT, so Eltrombopag 25mg/d was started, 6 weeks later no more transfusion was required, the bleeding stopped and no mores infections were observed; after 7 months had a partial response Hb > 11g/dL CAN > 1000m3 & platelets 45 x103, and Eltrombopag was stopped. This two patients use Eltrombopag as compassionate use, with good clinical results, in spite of low dose to get a partial hematological response. Low dose of Eltrombopag is useful to induce partial response rapidily with an excellent clinical results even when it is discontinued. Actually all patients with new SAA diagnostic are register in our Institution in a prospective protocol to receive ATG+CyA and start Eltrombopag 50mg/d with increase according to the response. The low dose could be a good option for patients with refractory aplastic anemia to get a partial response in development countries with less morbidity-mortality and a better quality of life. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Naheed Waseem A. Sheikh ◽  
Satish B. Kosalge ◽  
Tusharbindu R. Desai ◽  
Anil P. Dewani ◽  
Deepak S. Mohale ◽  
...  

Iron overload disease is a group of heterogeneous disease, which is caused either due to hereditary or acquired condition. Excess of iron participate in redox reactions that catalyzes the generation of reactive oxygen species (ROS) and increases oxidative stress, which causes cellular damage and encourage the cell injury and cell death. The electronic databases of Scopus, PubMed and Google Scholar have been intensively searched for the research as well as review articles published with the full text available and with the key words such as natural iron chelating agent, synthetic iron chelating agents, iron overload disease, oxidative stress and antioxidant which were appearing in the title, abstract or keywords. In light of the literature review presented in this artial, based on meta-analyses, we suggest that iron chelating agents were used for the management of iron overload disease. These agents were having wide spectrum of activity, they were not only used for the management of iron overload disease but also used as anticancer and antioxidant in various oxidative stress mediated diseases. Last from many years Desferoxamine (DFO) was used as standard iron chelator but currently two new synthetic iron chelators such as Deferiprone (DFP) and Deferasirox (DFS) are available clinically. These clinically available synthetic iron chelators were having serious side effects and certain limitations. Phytochemicals such as flavonoids and polyphenols compounds were having iron chelating as well as antioxidant property with no or minimal side effects. Hence, this review provides an updates on natural iron chelation therapy for the safe and efficacious management of iron overload diseases.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3840-3840 ◽  
Author(s):  
Ali Taher ◽  
Amal El-Beshlawy ◽  
Abdullah Al Jefri ◽  
Mohsen El Alfy ◽  
Kusai Al Zir ◽  
...  

Abstract Iron overload is a potentially life-threatening consequence of multiple blood transfusions. Effective iron chelation therapy reduces morbidity and saves lives. Many patients are unable to comply with current treatments, deferoxamine (DFO) or deferiprone (L1), because they cannot tolerate the parenteral infusion regimen required for DFO, because of adverse events (AEs), or because they do not respond to treatment. The objective of the ESCALATOR trial is to evaluate the effectiveness of deferasirox, an investigational once-daily oral iron chelator in advanced clinical development, in reducing liver iron concentration (LIC) in patients with β-thalassemia unable to be properly treated with DFO and/or L1. During a 1-year treatment period, patients will receive deferasirox at a daily dose of 20 mg/kg. Reduction of LIC is the primary endpoint, as assessed by biopsy at baseline and study end. Secondary efficacy variables include serum ferritin (SF) and other potential surrogate markers of iron overload such as concentration of labile plasma iron (LPI) in a subgroup of patients. Safety assessments include AEs and comprehensive laboratory evaluations. To date, 232 patients have initiated treatment at seven centers in five countries (Egypt, Saudi Arabia, Lebanon, Oman, Syria). Demographics, relevant medical history and baseline iron burden parameters are described in the table. Importantly, baseline SF values were significantly correlated with LIC (R=0.63; P<0.0001). The last patient’s last visit will be in June 2006. Age 2 to <16 years (n=159) Age ≥16 years (n=73) All patients (n=232) Mean ± SD; †n=14 Female:male, n 79:80 35:38 114:118 Race (caucasian:oriental:other), n 59:81:19 11:41:21 70:122:40 BMI*, kg/m2 17.4 ± 2.6 21.6 ± 3.2 18.7 ± 3.4 Weight*, kg 29.4 ± 9.9 54.7 ± 9.7 37.3 ± 15.3 Hepatitis B or C, n 43 29 72 Splenectomy, n 46 53 99 Transfusions in previous year*, n 15.5 ± 4.5 14.3 ± 3.7 15.1 ± 4.3 Total volume transfused in previous year*, mL 5265 ± 2469 7446 ± 2953 5873 ± 2784 Years on chelation therapy*, n 6.2 ± 3.5 12.7 ± 4.8 8.2 ± 4.9 Proportion of life on transfusion therapy*, % 89.3 ± 13.9 89.0 ± 14.1 89.2 ± 14.0 Liver pathology grading (modified HAI scale)     Grade 0–6 143 64 207     Grade 7–12 4 0 4     Grade 13–18 0 0 0 LIC, mg Fe/g dw     Mean ± SD 17.1 ± 8.5 20.0 ± 10.0 18.0 ± 9.1     Median (min, max) 16.6 (2.9, 38.2) 19.0 (2.9, 48.9) 17.5 (2.9, 48.9) SF, ng/mL     Mean ± SD 3957 ± 2342 4564 ± 4117 4148 ± 3019     Median (min, max) 3356 (914, 13539) 3335 (956, 23017) 3346 (914, 23017) LPI†,μmol/L     Mean ± SD - - 1.03 ± 0.80     Median (min, max) - - 0.82 (0, 2.65) The ESCALATOR study cohort is a highly challenging population with varied chelation response and transfusion history. The magnitude of LIC and SF, which were well correlated, reflects the severity of iron overload in patients unable to maintain adequate chelation using DFO or L1. This study will provide important insights into the clinical management of iron overload with the well tolerated, once-daily oral iron chelator deferasirox in this difficult-to-treat population.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4031-4031
Author(s):  
Oscar Boutros Lahoud ◽  
Velta Willis ◽  
William B. Solomon

Abstract Background: Patients with beta-thalassemia intermedia are at increased risk of developing clinically relevant iron overload independent of blood transfusions, which can result in serious sequelae, including liver, myocardial and endocrine dysfunction. This is thought to be modulated by downregulation of hepcidin and upregulation of ferroportin1. Standard of care in these patients has essentially consisted of iron-chelating agents such as deferasirox, presumably based on the hypothesis that phlebotomy would worsen clinical anemia and potentially exacerbate further ineffective erythropoeisis2. We present the cases of two patients with non-transfusion dependent iron overload secondary to beta-thalassemia intermedia, who were treated with serial phlebotomies as well as hydroxyurea. Case #1: Patient A was heterozygous for the Gln39X beta zero thalassemic allele as well as heterozygous for the H63D HFE-1 allele, and presented with a serum ferritin of 1928 ng/ml. T2* MRI of liver and myocardium demonstrated mild iron deposition in the liver and none in the heart. During a period of 18 months Patient A received serial phlebotomies and hydroxyurea 500 mg daily with decrease in serum ferritin to 770 ng/ml with no change in her baseline Hb and an increase in Hb F from 7% to 15%. Repeat T2*MRI of the liver and myocardium demonstrated no clinically significant iron deposition. Patient A continues to be phlebotomized every one to two months. Case #2: Patient B was heterozygous for the Gln39X beta zero allele with no mutant HFE-1 alleles, and presented with a serum ferritin of 1230 ng/ml. T2* MRI of the liver and myocardium demonstrated iron deposition in the liver and none in the heart. Over a period of twelve months patient B received serial phlebotomies and hydroxyurea 500 mg daily with decrease in his serum ferritin to 450 ng/mL, with no change in baseline Hb and no increase in Hb F. Repeat T2* MRI demonstrated no cardiac iron overload and slight improvement in the liver T2* relaxation time. Patient B continues to be phlebotomized every one to two months. Discussion: We presented two cases of non-transfusion dependent iron overload secondary to beta thalassemia intermedia managed with the combination of phlebotomy and low dose hydroxyurea, which resulted in clinically significant decrease in serum ferritin. In both patients the decrease in serum ferritin averaged ~65 ng/ml/month. As a reference, the higher dose regimen of deferasirox 10 mg/kg/d has a reported average decrease in serum ferritin of around 222 ng/mL/year, corresponding to an estimated 18.5 ng/mL/month2. There was no change in either patient’s Hb/Hct or markers of ineffective erythropoiesis such as LDH, indirect bilirubin and reticulocyte count. This could be due to a somewhat protective effect from hydroxyurea, which may decrease unbound alpha-globin chains, thereby permitting phlebotomy while maintaining adequate counts. Conclusion: These two cases suggest that in some non-transfusion dependent patients, the combination of phlebotomy and hydroxyurea may be an appropriate first-line treatment of iron overload due to beta-thalassemia. It appears to potentially offer enhanced efficacy with presumably less toxicity than standard iron-chelating agents in selected patients. Further investigation is needed to determine the specific population that would benefit most from this combination. The optimal treatment modality/combination in those patients has yet to be determined. Additional studies about treatment effect on iron-regulatory pathways are warranted. References: (1) Gardenghi S, et al. Ineffective erythropoiesis in beta-thalassemia is characterized by increased iron absorption mediated by down-regulation of hepcidin and up-regulation of ferroportin. Blood 2007: 109(11):5027-5035. (2) Taher AT, et al. Deferasirox reduces iron overload significantly in nontransfusion-dependent thalassemia: 1-year results from a prospective, randomized, double-blind, placebo-controlled study. Blood 2012; 120(5): 970-977. Disclosures No relevant conflicts of interest to declare.


2018 ◽  
Vol 10 ◽  
pp. e2018064 ◽  
Author(s):  
Vincenzo De Sanctis

Abstract. Introduction: Due to the chronic nature of chelation therapy and the adverse consequences of iron overload, patient adherence to therapy is an important issue. Jadenu ® is a new oral formulation of deferasirox (Exjade ®) tablets for oral suspension. While Exjade®  is a dispersible tablet that must be mixed in liquid and taken on an empty stomach, Jadenu ® can be taken in a single step, with or without a light meal, simplifying administration for the treatment of  patients with chronic iron overload. This may significantly improve the compliance to treatment of patients withβ-thalasemia major (BMT). The aim of this study was to evalute the drug tolerability and the effects of chelation therapy on serum ferritin concentration, liver iron concentration (LIC) and biochemical profiles in patients with BMT and iron overload. Patients and Methods: Twelve selected adult patients BMT (mean age: 29 years; range:15-34 years) were enrolled in the study. All patients were on monthly regular packed cell transfusion therapy to keep their pre-transfusional hemoglobin (Hb) level not less than 9 g/dL. They were on Exjade ® therapy (30 mg/kg per day) for 2 years or more before starting Jadenu ® therapy (14-28 mg/kg/day). The reason for  shifting from Deferasirox ® to Jadenu ® therapy was lack of tolerability,  since most of the patients described Deferasirox ® as not palatable. Lab investigations included montly urine analysis and measurement of their serum concentrations of creatinine, fasting blood glucose (FBG), serum ferritin, alkaline phosphatase (ALP), alanine transferase (ALT), aspartate transferase (AST) and albumin concentrations. LIC was measured using FerriScan ®. Thyroid function, vitamin D and serum parathormone, before and one year  after starting  Jadenu ® therapy, were also assessed. Results: Apart from some minor gastrointestinal complaints reported in 3 BMT patients that did not require discontinuation of therapy, other side effects were not registered during the treatment.  Subjectively, patients reported an improvement in the palatability of Jadenu® compared to Exjade ® therapy in 8 out of 12 BMT patients.  A non-significant decrease in LIC and  serum ferritin levels was observed after 1 year of  treatment with Jadenu ® . A positive significant correlation was found between serum ferritin level and LIC measured by FerriScan ® method. LIC and serum ferritin level correlated significantly with ALT level (r = 0.31 and 0.45 respectively, p < 0.05). No significant correlation was detected between LIC and other biochemical or hormonal parameters. Conclusion: Our study shows that short-term treatment with Jadenu ® is safe but is associated with  a non-significant decrease in LIC and serum ferritin levels. Therefore, there is an urgent need for adequately-powered and high-quality trials to assess the clinical efficacy and  the long-term outcomes of new deferasirox formulation.


Sign in / Sign up

Export Citation Format

Share Document