scholarly journals X-linked thrombocytopenia with thalassemia from a mutation in the amino finger of GATA-1 affecting DNA binding rather than FOG-1 interaction

Blood ◽  
2002 ◽  
Vol 100 (6) ◽  
pp. 2040-2045 ◽  
Author(s):  
Channing Yu ◽  
Kathy K. Niakan ◽  
Mark Matsushita ◽  
George Stamatoyannopoulos ◽  
Stuart H. Orkin ◽  
...  

Abstract Transcription factor GATA-1 is essential for the development of erythroid cells and megakaryocytes. Each of its 2 zinc fingers is critical for normal function. The C-terminal finger is necessary for DNA binding. The N finger mediates interaction with FOG-1, a cofactor for GATA-1, and also modulates DNA-binding affinity, notably at complex or palindromic GATA sites. Residues of the N finger–mediating interaction with FOG-1 lie on the surface of the N finger facing away from DNA. Strong sequence conservation of residues facing DNA suggests that this other surface may also have an important role. We report here that a syndrome of X-linked thrombocytopenia with thalassemia in humans is caused by a missense mutation (Arg216Gln) in the GATA-1 N finger. To investigate the functional consequences of this substitution, we used site-directed mutagenesis to alter the corresponding residue in GATA-1. Compared with wild-type GATA-1, Arg216Gln GATA-1 shows comparable affinity to single GATA sites but decreased affinity to palindromic sites. Arg216Gln GATA-1 interacts with FOG-1 similarly with wild-type GATA-1. Arg216Gln GATA-1 supports erythroid maturation of GATA-1 erythroid cells, albeit at reduced efficiency compared with wild-type GATA-1. Together, these findings suggest that residues of the N finger of GATA-1–facing DNA contribute to GATA-1 function apart from interaction with the cofactor FOG-1. This is also the first example of β-thalassemia in humans caused by a mutation in an erythroid transcription factor.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2371-2371
Author(s):  
Amy E Campbell ◽  
Gerd A. Blobel

Abstract Abstract 2371 Missense mutations in the gene encoding hematopoietic transcription factor GATA1 cause congenital anemias and/or thrombocytopenias. Seven such mutations are reported. All of these give rise to amino acid substitutions within the amino terminal zinc finger (NF) of GATA1, producing a range of clinical phenotypes. Thus, V205M, G208R, and D218Y cause severe anemia and thrombocytopenia; G208S, R216Q, and D218G cause thrombocytopenia with minimal anemia; R216W gives rise to thrombocytopenia and congenital erythropoietic porphyria. One of these mutations, R216Q, occurs at the DNA binding interface and alters the ability of GATA1 to recognize a subset of cis motifs in vitro. Other mutations, including V205M, G208S, D218G, and D218Y, occur outside the DNA binding domain of the NF and inhibit interactions with the GATA1 cofactor FOG1 as determined by in vitro binding assays. However, these two mechanisms do not easily explain the broad spectrum of phenotypes associated with the mutations. For example, how do two substitutions of the same residue bring about disparate phenotypes? We examined the effects of each mutation on erythroid maturation, lineage-specific gene expression, in vivo target gene occupancy, and cofactor recruitment by introducing altered forms of GATA1 into murine GATA1-null proerythroblasts. The V205M, G208R, and D218Y mutations severely impaired erythroid maturation, recapitulating patient phenotypes. The G208S mutation also severely impaired erythroid maturation, causing a more pronounced defect than that expected from the clinical presentation. In contrast, R216Q and D218G produced mild effects in erythroid cells consistent with patient phenotypes. The porphyria-associated mutation R216W also produced relatively subtle effects in erythroid cells. We note that among the mutants, failure to activate gene expression strongly correlated with failure to repress gene expression. ChIP assays revealed that the V205M, G208R, and D218Y mutations impaired GATA1 target site occupancy. This indicates that despite normal DNA binding in vitro, the association with cofactor complexes is required for stable binding to chromatinized target sites in vivo. In contrast, the G208S mutant exhibited relatively normal chromatin occupancy, but reduced recruitment of FOG1 and SCL/Tal1 to GATA1-bound sites at erythroid genes. D218G also perturbed cofactor recruitment without greatly affecting GATA1 binding to its target genes. Notably, this mutation diminished SCL/Tal1 recruitment without significantly altering FOG1 occupancy. This implicates the SCL/Tal1 transcription complex in the pathogenesis of disorders caused by certain GATA1 mutations. Moreover, by uncoupling GATA1 chromatin occupancy and cofactor recruitment, G208S and D218G offer potentially useful tools for unraveling site-specific mechanisms of GATA1-regulated gene expression. Finally, both the R216Q and R216W mutants displayed relatively normal GATA1 chromatin occupancy and FOG1 and SCL/Tal1 recruitment at most sites. R216W presents as porphyria, and selective defects in the regulation of heme biosynthetic genes have yet be uncovered. Given that R216Q presents as thrombocytopenia, defects caused by this mutation may be revealed only in the context of megakaryocytes. Studies using similar rescue assays of a GATA1-null megakaryocyte-erythroid progenitor line are underway and will be discussed. In concert, our results reveal that in vivo analysis of GATA1 in its native environment provides mechanistic insights not obtainable from in vitro studies. Moreover, they demonstrate the usefulness of gene complementation assays for the dissection of transcription pathways surrounding normal and altered GATA1 to improve our understanding of disease. Disclosures: No relevant conflicts of interest to declare.


2015 ◽  
Vol 44 (7) ◽  
pp. 3045-3058 ◽  
Author(s):  
Sergey Belikov ◽  
Otto G. Berg ◽  
Örjan Wrange

1993 ◽  
Vol 13 (11) ◽  
pp. 6858-6865
Author(s):  
M W Russo ◽  
C Matheny ◽  
J Milbrandt

NGFI-A is an immediate-early gene that encodes a transcription factor whose DNA-binding domain is composed of three zinc fingers. To define the domains responsible for its transcriptional activity, a mutational analysis was conducted with an NGFI-A molecule in which the zinc fingers were replaced by the GAL4 DNA-binding domain. In a cotransfection assay, four activation domains were found within NGFI-A. Three of the activation domains are similar to those characterized previously: one contains a large number of acidic residues, another is enriched in proline and glutamine residues, and another has some sequence homology to a domain found in Krox-20. The fourth bears no resemblance to previously described activation domains. NGFI-A also contains an inhibitory domain whose removal resulted in a 15-fold increase in NGFI-A activity. This increase in activity occurred in all mammalian cell types tested but not in Drosophila S2 cells. Competition experiments in which increasing amounts of the inhibitory domain were cotransfected along with NGFI-A demonstrated a dose-dependent increase in NGFI-A activity. A point mutation within the inhibitory domain of the competitor (I293F) abolished this property. When the analogous mutation was introduced into native NGFI-A, a 17-fold increase in activity was observed. The inhibitory effect therefore appears to be the result of an interaction between this domain and a titratable cellular factor which is weakened by this mutation. Downmodulation of transcription factor activity through interaction with a cellular factor has been observed in several other systems, including the regulation of transcription factor E2F by retinoblastoma protein, and in studies of c-Jun.


2001 ◽  
Vol 21 (21) ◽  
pp. 7460-7469 ◽  
Author(s):  
Qiangrong Liang ◽  
Russell J. Wiese ◽  
Orlando F. Bueno ◽  
Yan-Shan Dai ◽  
Bruce E. Markham ◽  
...  

ABSTRACT The zinc finger-containing transcription factor GATA4 has been implicated as a critical regulator of multiple cardiac-expressed genes as well as a regulator of inducible gene expression in response to hypertrophic stimulation. Here we demonstrate that GATA4 is itself regulated by the mitogen-activated protein kinase signaling cascade through direct phosphorylation. Site-directed mutagenesis and phospho-specific GATA4 antiserum revealed serine 105 as the primary site involved in agonist-induced phosphorylation of GATA4. Infection of cultured cardiomyocytes with an activated MEK1-expressing adenovirus induced robust phosphorylation of serine 105 in GATA4, while a dominant-negative MEK1-expressing adenovirus blocked agonist-induced phosphorylation of serine 105, implicating extracellular signal-regulated kinase (ERK) as a GATA4 kinase. Indeed, bacterially purified ERK2 protein directly phosphorylated purified GATA4 at serine 105 in vitro. Phosphorylation of serine 105 enhanced the transcriptional potency of GATA4, which was sensitive to U0126 (MEK1 inhibitor) but not SB202190 (p38 inhibitor). Phosphorylation of serine 105 also modestly enhanced the DNA binding activity of bacterially purified GATA4. Finally, induction of cardiomyocyte hypertrophy with an activated MEK1-expressing adenovirus was blocked with a dominant-negative GATA4-engrailed-expressing adenovirus. These results suggest a molecular pathway whereby MEK1-ERK1/2 signaling regulates cardiomyocyte hypertrophic growth through the transcription factor GATA4 by direct phosphorylation of serine 105, which enhances DNA binding and transcriptional activation.


1994 ◽  
Vol 244 (1) ◽  
pp. 23-25 ◽  
Author(s):  
Karen R. Clemens ◽  
Penghua Zhang ◽  
Xiubei Liao ◽  
Steven J. McBryant ◽  
Peter E. Wright ◽  
...  

1995 ◽  
Vol 15 (3) ◽  
pp. 1522-1535 ◽  
Author(s):  
W J Fredericks ◽  
N Galili ◽  
S Mukhopadhyay ◽  
G Rovera ◽  
J Bennicelli ◽  
...  

Alveolar rhabdomyosarcomas are pediatric solid tumors with a hallmark cytogenetic abnormality: translocation of chromosomes 2 and 13 [t(2;13) (q35;q14)]. The genes on each chromosome involved in this translocation have been identified as the transcription factor-encoding genes PAX3 and FKHR. The NH2-terminal paired box and homeodomain DNA-binding domains of PAX3 are fused in frame to COOH-terminal regions of the chromosome 13-derived FKHR gene, a novel member of the forkhead DNA-binding domain family. To determine the role of the fusion protein in transcriptional regulation and oncogenesis, we identified the PAX3-FKHR fusion protein and characterized its function(s) as a transcription factor relative to wild-type PAX3. Antisera specific to PAX3 and FKHR were developed and used to examine PAX3 and PAX3-FKHR expression in tumor cell lines. Sequential immunoprecipitations with anti-PAX3 and anti-FKHR sera demonstrated expression of a 97-kDa PAX3-FKHR fusion protein in the t(2;13)-positive rhabdomyosarcoma Rh30 cell line and verified that a single polypeptide contains epitopes derived from each protein. The PAX3-FKHR protein was localized to the nucleus in Rh30 cells, as was wild-type PAX3, in t(2;13)-negative A673 cells. In gel shift assays using a canonical PAX binding site (e5 sequence), we found that DNA binding of PAX3-FKHR was significantly impaired relative to that of PAX3 despite the two proteins having identical PAX DNA-binding domains. However, the PAX3-FKHR fusion protein was a much more potent transcriptional activator than PAX3 as determined by transient cotransfection assays using e5-CAT reporter plasmids. The PAX3-FKHR protein may function as an oncogenic transcription factor by enhanced activation of normal PAX3 target genes.


1993 ◽  
Vol 13 (3) ◽  
pp. 1378-1384
Author(s):  
O Foord ◽  
N Navot ◽  
V Rotter

Wild-type p53 was shown to function as a transcription factor. The N-terminal region of the protein contains the transcription activation domain, while the C terminus is responsible for DNA binding. Localization of the DNA-binding domain of the p53 protein to the highly conserved carboxy-terminal region suggests that the interaction of p53 with DNA is important for its function. We have developed a strategy for studying the DNA sequence specificity of p53-DNA binding that is based on random sequence selection. We report here on the isolation of murine genomic DNA clones that are specifically bound by the wild-type p53 protein but are not bound by mutant p53 protein forms. The isolated p53 target gene contains the unique DNA-binding sequence GACACTGGTCACACTTGGCTGCTTAGGAAT. This fragment exhibits promoter activity as measured by its capacity to activate transcription of the chloramphenicol acetyltransferase reporter gene. Our results suggest that p53 directly binds DNA and functions as a typical transcription factor.


Sign in / Sign up

Export Citation Format

Share Document