Cannabis-induced cytotoxicity in leukemic cell lines: the role of the cannabinoid receptors and the MAPK pathway

Blood ◽  
2005 ◽  
Vol 105 (3) ◽  
pp. 1214-1221 ◽  
Author(s):  
Thomas Powles ◽  
Robert te Poele ◽  
Jonathan Shamash ◽  
Tracy Chaplin ◽  
David Propper ◽  
...  

Abstract Δ9-Tetrahydrocannabinol (THC) is the active metabolite of cannabis. THC causes cell death in vitro through the activation of complex signal transduction pathways. However, the role that the cannabinoid 1 and 2 receptors (CB1-R and CB2-R) play in this process is less clear. We therefore investigated the role of the CB-Rs in mediating apoptosis in 3 leukemic cell lines and performed microarray and immunoblot analyses to establish further the mechanism of cell death. We developed a novel flow cytometric technique of measuring the expression of functional receptors and used combinations of selective CB1-R and CB2-R antagonists and agonists to determine their individual roles in this process. We have shown that THC is a potent inducer of apoptosis, even at 1 × IC50 (inhibitory concentration 50%) concentrations and as early as 6 hours after exposure to the drug. These effects were seen in leukemic cell lines (CEM, HEL-92, and HL60) as well as in peripheral blood mononuclear cells. Additionally, THC did not appear to act synergistically with cytotoxic agents such as cisplatin. One of the most intriguing findings was that THC-induced cell death was preceded by significant changes in the expression of genes involved in the mitogen-activated protein kinase (MAPK) signal transduction pathways. Both apoptosis and gene expression changes were altered independent of p53 and the CB-Rs.

Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 192
Author(s):  
Siska Van Belle ◽  
Sara El Ashkar ◽  
Kateřina Čermáková ◽  
Filip Matthijssens ◽  
Steven Goossens ◽  
...  

HDGF-related protein 2 (HRP-2) is a member of the Hepatoma-Derived Growth Factor-related protein family that harbors the structured PWWP and Integrase Binding Domain, known to associate with methylated histone tails or cellular and viral proteins, respectively. Interestingly, HRP-2 is a paralog of Lens Epithelium Derived Growth Factor p75 (LEDGF/p75), which is essential for MLL-rearranged (MLL-r) leukemia but dispensable for hematopoiesis. Sequel to these findings, we investigated the role of HRP-2 in hematopoiesis and MLL-r leukemia. Protein interactions were investigated by co-immunoprecipitation and validated using recombinant proteins in NMR. A systemic knockout mouse model was used to study normal hematopoiesis and MLL-ENL transformation upon the different HRP-2 genotypes. The role of HRP-2 in MLL-r and other leukemic, human cell lines was evaluated by lentiviral-mediated miRNA targeting HRP-2. We demonstrate that MLL and HRP-2 interact through a conserved interface, although this interaction proved less dependent on menin than the MLL-LEDGF/p75 interaction. The systemic HRP-2 knockout mice only revealed an increase in neutrophils in the peripheral blood, whereas the depletion of HRP-2 in leukemic cell lines and transformed primary murine cells resulted in reduced colony formation independently of MLL-rearrangements. In contrast, primary murine HRP-2 knockout cells were efficiently transformed by the MLL-ENL fusion, indicating that HRP-2, unlike LEDGF/p75, is dispensable for the transformation of MLL-ENL leukemogenesis but important for leukemic cell survival.


Blood ◽  
1996 ◽  
Vol 87 (9) ◽  
pp. 3783-3794 ◽  
Author(s):  
I Parolini ◽  
M Sargiacomo ◽  
MP Lisanti ◽  
C Peschle

Src-family nonreceptor protein tyrosine kinases (NRPTK) are associated with cell surface receptors in large detergent-resistant complexes: in epithelial cells, yes is selectively located in vesicle structures containing caveolin (“caveolae”). These formations are typically also endowed with glycophosphatidylinositol (GPI)-anchored proteins. In the present study, we observed lck, lyn, src, hck, CD4, CD45, G proteins, and CD55 (decay-accelerating factor) expression in the buoyant low- density Triton-insoluble (LDTI) fraction of selected leukemic cell lines and granulocytes. We provide a detailed analysis of the two most highly expressed NRPTK, p53/p56lyn and p56lck, which are involved in the transduction of signals for proliferation and differentiation of monocytes/B lymphocytes and T lymphocytes, respectively. We show that lyn is selectively recovered in LDTI complexes isolated from human leukemic cell lines (promyelocytic [HL-60], erythroid [K562] and B- lymphoid [697]) and from normal human granulocytes, and that lck is recovered from LDTI fractions of leukemic T- and B-lymphoid cell lines (CEM, 697). In LDTI fractions of leukemic cells, lck and lyn are enriched 100-fold as compared with the total cell lysates. Analysis of these fractions by electron microscopy shows the presence of 70- to 200- nm vesicles: lyn and lck are homogenously distributed in the vesicles, as revealed by an immunogold labeling procedure. These novel results propose a role for these vesicles in signal transduction mechanisms of normal and neoplastic hematopoietic cells. In support of this hypothesis, we further observed that molecules participating in B- and T-cell receptor activation cofractionate in the LDTI fractions, CD45/lyn (B cells) and CD45/lck/CD4 (T cells).


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Ivanka Kraicheva ◽  
Georgi Momekov ◽  
Rositsa Mihaylova ◽  
Margarita Topashka-Ancheva ◽  
Ivelina Tsacheva ◽  
...  

Two novel polyphosphoesters containing anthracene- and furan-derived aminophosphonate moieties, namely, poly[oxyethylene(aminophosphonate-co-H-phosphonate)]s P-12 and P-13, were synthesized through an addition of poly(oxyethylene H-phosphonate) to 9-anthrylidene-furfurylamine and characterized. The novel polyphosphoester P-12 and a series of previously described anthracene-derived compounds including Schiff bases S-1 and S-2, α-aminophosphonates A-3–A-6, bis-aminophosphonate B-6, two enantiomers A-5a and A-5b, and polyphosphoesters P-8–P-11 containing aminophosphonate units were screened for antitumor activity against a panel of human leukemic cell lines, using cisplatin as a reference cytotoxic agent. As concluded from the cytotoxicity assays, both precursors S-1 and S-2 presented similar cytotoxicity profiles that are cisplatin-like only in the REH cell line. Leader compound of the α-aminophosphonates is A-4 with cell death-inducing properties fully equaling those of the referent drug in all of the screened leukemic cell lines with the only exception being the AML histological subtype HL-60. Some of the polymeric analogues elicited moderate (P-10 and P-12) to low (P-11) cytotoxic activity, whereas the polyphosphoesters P-8 and P-9 produced in vitro antitumor effects largely surpassing cisplatin’s. The compounds P-8, P-9, and A-4 could be potential new materials for anticancer therapeutic purposed.


1997 ◽  
Vol 123 (7) ◽  
pp. 370-376 ◽  
Author(s):  
Masatsugu Kurokawa ◽  
Hiroshi Sakagami ◽  
Fumio Kokubu ◽  
Hiromichi Noda ◽  
Minoru Takeda ◽  
...  

1997 ◽  
Vol 123 (7) ◽  
pp. 370-376 ◽  
Author(s):  
Masatsugu Kurokawa ◽  
Hiroshi Sakagami ◽  
Fumio Kokubu ◽  
Hiromichi Noda ◽  
Minoru Takeda ◽  
...  

Blood ◽  
1999 ◽  
Vol 93 (7) ◽  
pp. 2369-2379 ◽  
Author(s):  
Richard Y. Liu ◽  
Chun Fan ◽  
Roy Garcia ◽  
Richard Jove ◽  
Kenneth S. Zuckerman

Abstract The factor-independent Dami/HEL and Meg-01 and factor-dependent Mo7e leukemic cell lines were used as models to investigate JAK/STAT signal transduction pathways in leukemic cell proliferation. Although Dami/HEL and Meg-01 cell proliferation in vitro was independent of and unresponsive to exogenous cytokines including granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3), IL-6, thrombopoietin (TPO), and tumor necrosis factor- (TNF-), the growth of Mo7e cells was dependent on hematopoietic growth factors. When these cell lines were cultured in medium without cytokines, a constitutively activated STAT-like DNA-binding factor was detected in nuclear extracts from both Dami/HEL and Meg-01 cells. However, the STAT-like factor was not detectable in untreated Mo7e cells, but was activated transiently in Mo7e cells in response to cytokine treatments. The constitutively activated and cytokine-induced STAT-like DNA-binding factor in these three cell lines was identified as STAT5 by oligonucleotide competition gel mobility assays and by specific anti-STAT antibody gel supershift assays. Constitutive activation of JAK2 also was detected in the factor-independent cell lines, but not in Mo7e cells without cytokine exposure. Meg-01 cells express a p185 BCR/ABL oncogene, which may be responsible for the constitutive activation of STAT5. Dami/HEL cells do not express the BCR/ABL oncogene, but increased constitutive phosphorylation of Raf-1 oncoprotein was detected. In cytokine bioassays using growth factor-dependent Mo7e and TF-1 cells as targets, conditioned media from Dami/HEL and Meg-01 cells did not show stimulatory effects on cell proliferation. Our results indicate that the constitutive activation of JAK2/STAT5 correlates with the factor-independent growth of Dami/HEL and Meg-01 cells. The constitutive activation of JAK2/STAT5 in Dami/HEL cells is triggered by a mechanism other than autocrine cytokines or the BCR/ABL oncoprotein.


Blood ◽  
1999 ◽  
Vol 93 (7) ◽  
pp. 2369-2379 ◽  
Author(s):  
Richard Y. Liu ◽  
Chun Fan ◽  
Roy Garcia ◽  
Richard Jove ◽  
Kenneth S. Zuckerman

The factor-independent Dami/HEL and Meg-01 and factor-dependent Mo7e leukemic cell lines were used as models to investigate JAK/STAT signal transduction pathways in leukemic cell proliferation. Although Dami/HEL and Meg-01 cell proliferation in vitro was independent of and unresponsive to exogenous cytokines including granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3), IL-6, thrombopoietin (TPO), and tumor necrosis factor- (TNF-), the growth of Mo7e cells was dependent on hematopoietic growth factors. When these cell lines were cultured in medium without cytokines, a constitutively activated STAT-like DNA-binding factor was detected in nuclear extracts from both Dami/HEL and Meg-01 cells. However, the STAT-like factor was not detectable in untreated Mo7e cells, but was activated transiently in Mo7e cells in response to cytokine treatments. The constitutively activated and cytokine-induced STAT-like DNA-binding factor in these three cell lines was identified as STAT5 by oligonucleotide competition gel mobility assays and by specific anti-STAT antibody gel supershift assays. Constitutive activation of JAK2 also was detected in the factor-independent cell lines, but not in Mo7e cells without cytokine exposure. Meg-01 cells express a p185 BCR/ABL oncogene, which may be responsible for the constitutive activation of STAT5. Dami/HEL cells do not express the BCR/ABL oncogene, but increased constitutive phosphorylation of Raf-1 oncoprotein was detected. In cytokine bioassays using growth factor-dependent Mo7e and TF-1 cells as targets, conditioned media from Dami/HEL and Meg-01 cells did not show stimulatory effects on cell proliferation. Our results indicate that the constitutive activation of JAK2/STAT5 correlates with the factor-independent growth of Dami/HEL and Meg-01 cells. The constitutive activation of JAK2/STAT5 in Dami/HEL cells is triggered by a mechanism other than autocrine cytokines or the BCR/ABL oncoprotein.


2018 ◽  
Vol 4 (12) ◽  
pp. 1746-1754 ◽  
Author(s):  
Stella Hartmann ◽  
David J. Nusbaum ◽  
Kevin Kim ◽  
Saleem Alameh ◽  
Chi-Lee C. Ho ◽  
...  

BMC Cancer ◽  
2018 ◽  
Vol 18 (1) ◽  
Author(s):  
Tomohiro Kozako ◽  
Paolo Mellini ◽  
Takeo Ohsugi ◽  
Akiyoshi Aikawa ◽  
Yu-ichiro Uchida ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document