Activated protein C induces the release of microparticle-associated endothelial protein C receptor

Blood ◽  
2005 ◽  
Vol 105 (4) ◽  
pp. 1515-1522 ◽  
Author(s):  
Margarita Pérez-Casal ◽  
Colin Downey ◽  
Kenji Fukudome ◽  
Gernot Marx ◽  
Cheng Hock Toh

Abstract Activated protein C (APC) treatment is now used for patients with severe sepsis. We investigated its effect in vitro on primary, physiologically relevant cells and demonstrate a novel mechanism of endothelial protein C receptor (EPCR) release that is not inhibited by metalloproteinase inhibitors. Exposure of human umbilical vein endothelial cells or monocytes to APC (6.25-100 nM) results in the release of EPCR-containing microparticles, as demonstrated by confocal microscopy and characterized through flow cytometry, enzyme-linked immunosorbent assay quantitation of isolated microparticles, and Western blotting. The phenomenon is time- and concentration-dependent and requires the APC active site, EPCR, and protease activated receptor 1 (PAR1) on endothelial cells. Neither protein C nor boiled or d-Phe-Pro-Arg-chloromethylketone–blocked APC can induce microparticle formation and antibody blockade of EPCR or PAR1 cleavage and activation abrogates this APC action. Coincubation with hirudin does not alter the APC effect. The released microparticle bound is full-length EPCR (49 kDa) and APC retains factor V–inactivating activity. Although tumor necrosis factor-α (10 ng/mL) can also induce microparticle-associated EPCR release to a similar extent as APC (100 nM), it is only APC-induced microparticles that contain bound APC. This novel observation could provide new insights into the consequences of APC therapy in the septic patient.

Blood ◽  
2003 ◽  
Vol 102 (1) ◽  
pp. 146-151 ◽  
Author(s):  
Arne Slungaard ◽  
Jose A. Fernandez ◽  
John H. Griffin ◽  
Nigel S. Key ◽  
Janel R. Long ◽  
...  

Abstract Platelet factor 4 (PF4), an abundant platelet α-granule protein, accelerates in vitro generation of activated protein C (APC) by soluble thrombin/thrombomodulin (TM) complexes up to 25-fold. To test the hypothesis that PF4 similarly stimulates endothelium-associated TM, we assessed the influence of human PF4 on thrombin-dependent APC generation by cultured endothelial monolayers. APC generated in the presence of 1 to 100 μg PF4 was up to 5-fold higher than baseline for human umbilical vein endothelial cells, 10-fold higher for microvascular endothelial cells, and unaltered for blood outgrowth endothelial cells. In an in vivo model, cynomolgus monkeys (n = 6, each serving as its own control) were infused with either PF4 (7.5 mg/kg) or vehicle buffer, then with human thrombin (1.0 μg/kg/min) for 10 minutes. Circulating APC levels (baseline 3 ng/mL) peaked at 10 minutes, when PF4-treated and vehicle-treated animals had APC levels of 67 ± 5 ng/mL and 39 ± 2 ng/mL, respectively (P < .001). The activated partial thromboplastin time (APTT; baseline, 28 seconds) increased maximally by 27 ± 6 seconds in PF4-treated animals and by 9 ± 1 seconds in control animals at 30 minutes (P < .001). PF4-dependent increases in circulating APC and APTT persisted more than 2-fold greater than that of control's from 10 through 120 minutes (P ≤ .04). All APTT prolongations were essentially reversed by monoclonal antibody C3, which blocks APC activity. Thus, physiologically relevant concentrations of PF4 stimulate thrombin-dependent APC generation both in vitro by cultured endothelial cells and in vivo in a primate thrombin infusion model. These findings suggest that PF4 may play a previously unsuspected physiologic role in enhancing APC generation. (Blood. 2003;102:146-151)


1995 ◽  
Vol 73 (04) ◽  
pp. 719-724 ◽  
Author(s):  
Hans-Peter Kohler ◽  
Michele Müller ◽  
Thomas Bombeli ◽  
P Werner Straub ◽  
André Haeberli

SummaryHuman umbilical vein endothelial cells (HUVEC) were cultivated on globular microcarriers in order to improve the endothelial cell surface to blood-volume ratio over the conventional flat bed cultures. HUVEC-beads were tested for their modulation of blood coagulation using a combination of two steps: HUVEC-beads were added into the syringe used for the venipuncture, in order to achieve immediate contact between cells and blood, and no anticoagulant was used during the incubation time of HUVEC-beads with whole blood. The coagulation initiation produced by venipuncture was almost completely suppressed as judged by thrombin measurements over a period of 60 min. The activated partial thromboplastin time showed a prolongation by a factor >3. Direct measurements of activated protein C (APC) were negative. Moreover, inhibition of APC-generation with a monoclonal anti-human protein C antibody did not affect the anticoagulant properties of endothelial cells. Therefore the anticoagulant properties exerted by HUVEC-beads are not dependent on APC.


2010 ◽  
Vol 103 (05) ◽  
pp. 910-919 ◽  
Author(s):  
Maria Christina Van Walderveen ◽  
Leslie Roy Berry ◽  
Helen Mary Atkinson ◽  
Anthony Kam Chuen Chan

SummaryThrombomodulin (TM), which variably contains a chondroitin sulfate (±CS), forms an anticoagulant complex with thrombin (IIa). IIaTM(±CS) converts protein C (PC) into activated PC (APC), which then inactivates activated factors V (FVa) and VIII (FVIIIa). This reduces prothrombinase and tenase complexes that generate IIa. Heparin (H) increases the rate of IIa-TM inhibition by antithrombin (AT) and enhances FV cleavage by APC. Our novel covalent AT-H (ATH) product, has superior anticoagulant activity compared to AT + unfractionated H (UFH). We studied mechanisms by which ATH versus AT + UFH inhibits IIaTM(±CS), and ATH influences on APC cleavage of FV/FVa compared to UFH. Findings would determine how these reactions moderate ATH’s overall effects as an anticoagulant. Discontinuous second order rate inhibition assays of IIa-TM(±CS) inhibition by AT + UFH or ATH were performed in presence or absence of human umbilical vein endothelial cells (HUVECs). FV/FVa cleavage by APC in the presence of UFH or ATH was analysed by Western blots. ATH increased IIa-TM(±CS) inhibition to a greater degree than AT + UFH, both on plastic and HUVEC surfaces. Unlike UFH, ATH did not accelerate FV cleavage by APC, but ATH did enhance FVa cleavage relative to UFH. Increased IIa-TM inhibition by ATH downregulates PC activation. However, ATH does accelerate downstream inactivation of FVa, which increases its potency for IIa generation inhibition compared to UFH. This trend holds true in the presence of APC’s cofactor, protein S. Overall, ATH may have a balanced function towards inhibiting or accelerating PC pathway activities.


2005 ◽  
Vol 93 (04) ◽  
pp. 743-750 ◽  
Author(s):  
Sarah Horn ◽  
Siegfried Lang ◽  
Kenji Fukudome ◽  
Adriane Nahrup ◽  
Ursula Hoffmann ◽  
...  

SummaryProstacyclin (PGI2) has beneficial cytoprotective properties, is a potent inhibitor of platelet aggregation and has been reported to improve microcirculatory blood flow during sepsis. The formation of PGI2 in response to proinflammatory cytokines is catalysed by the inducible cyclooxygenase (COX) isoform COX-2. Recombinant human activated protein C (rhAPC, drotrecogin alfa (activated)) was shown to have multiple biological activities in vitro and to promote resolution of organ dysfunction in septic patients. Whether rhAPC exerts its beneficial effects by modulating prostanoid generation is unknown up to now. It was therefore the aim of the study to examine the in vitro effect of rhAPC on COX-2-mRNA-expression and PGI2 release from human umbilical vein endothelial cells (HUVEC). We found that rhAPC, at supra-therapeutical concentrations (500ng/ml-20μg/ ml), upregulated the amount of COX-2-mRNA in HUVEC at t=3–9h and caused a time- and dose-dependent release of 6-keto PGF1α, the stable hydrolysis product of prostacyclin. RhAPC further increased the stimulating effect of tumor necrosis factor-α (TNF-α) and thrombin on COX-2-mRNA-levels. Transcript levels of cyclooxygenase-1 (COX-1) and prostagland-in I2 synthase, however, were unaffected by the stimulation with rhAPC or thrombin. The upregulatory effect on COX2-mRNA levels was specific for rhAPC since the zymogen protein C in equimolar concentrations had no effect on COX-2-mRNA-levels or 6keto PGF1α-release. Western Blot analysis revealed an increase of COX-2-protein content in HUVEC after treatment with rhAPC. As shown by experiments using monoclonal antibodies against the thrombin receptor PAR-1 (mAb=ATAP2) and against the endothelial protein C receptor (EPCR; mAb=RCR-252), the effect of rhAPC on COX-2-mRNA up-regulation was mediated by binding to the EPCR-receptor and signaling via PAR-1. These results demonstrate that induction of COX-2-expression is an important response of HUVEC to stimulation with rhAPC and may represent a new molecular mechanism, by which rhAPC promotes upregulation of prostanoid production in human endothelium.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1923-1923
Author(s):  
Margarita Perez-Casal ◽  
Kenji Fukudome ◽  
Cheng Hock Toh

Abstract Activated protein C (APC) administration is now used for treating patients with severe sepsis. We investigated its effect on primary, physiologically relevant cells and demonstrate a novel mechanism of endothelial protein C receptor (EPCR) release from the cell surface. Exposure of human umbilical vein endothelial cells or monocytes to APC (from physiological levels of 0.5 up to 100nM) resulted in the increasing release of EPCR-containing microparticles (EPCR-MP), as demonstrated by confocal microscopy. Further characterisation through flow cytometry showed a concomitant fall in EPCR levels from the cell surface. This release of EPCR could not be inhibited by the metalloproteinase inhibitors 1, 10-phenanthroline or Ro31-9790, unlike soluble EPCR (sEPCR) that is metalloproteinase cleaved at the cell surface following thrombin or pro- inflammatory cytokine stimulation. Western blotting confirmed the molecular weight of EPCR-MP to be identical to the full-length membrane form (49 kD) and different from sEPCR (45 kDa). APC was also bound to EPCR-MP and could be quantified by ELISA using EPCR capture and APC detection by chromogenic substrate, S2366. Using an initial factor Va incubation step followed by a prothrombinase assay, the APC bound to EPCR-MP could significantly reduce thrombin generation. This was abrogated in the presence of excess α1-antitrypsin, an APC inhibitor. By contrast, APC bound to sEPCR could no longer inactivate factor Va. Further characterisation showed the APC induction of EPCR-MP to be time dependent with increasing release over 24 hours, as quantified by ELISA. The phenomenon also required the active site of APC. Neither protein C, heat-inactivated or D-Phe-Pro-Arg-chloromethylketone-blocked APC could induce EPCR-MP formation. Co-incubation with hirudin (6mM) did not alter the APC effect and excluded any role of contaminating thrombin. This novel observation provides new insights into the consequences of APC therapy in the septic patient as well as demonstrating for the first time that there can be 2 circulating forms of EPCR. Unlike sEPCR however, EPCR-MP can facilitate and potentially disseminate the anticoagulant activity of bound APC.


Blood ◽  
2003 ◽  
Vol 102 (4) ◽  
pp. 1316-1322 ◽  
Author(s):  
Mårten Steen ◽  
Maria Miteva ◽  
Bruno O. Villoutreix ◽  
Tomio Yamazaki ◽  
Björn Dahlbäck

Abstract Factor V (FV) deficiency, also known as parahemophilia, is a rare bleeding disorder. Herein we investigate the first reported missense mutation associated with FV deficiency, Ala221Val, assigned as FV New Brunswick. To elucidate the molecular pathology associated with the Ala221Val substitution, the mutation was recreated in a recombinant system together with 3 FV mutants (Ala221Gly, Glu275Gln, and Cys220Ala/Cys301Ala) designed to help explain the Ala221Val phenotype. The expression pattern was analyzed by pulse-chase experiments and an FV-specific enzyme-linked immunosorbent assay (ELISA), the results suggesting the Ala221Val mutation not to interfere with the synthesis or secretion. The functional properties of the recombinant FV New Brunswick were evaluated in both plasma clotting and purified systems. The Ala221Val mutation did not affect the factor Xa (FXa) cofactor function; nor did it interfere with the activated protein C (APC)–mediated down-regulation of activated FV (FVa) activity. However, FV New Brunswick demonstrated reduced stability at 37°C due to an increased rate of dissociation of light and heavy chains of FVa. In conclusion, this in vitro study of FV New Brunswick suggests the Ala221Val mutation not to impair synthesis and expression of procoagulant activity, indicating overall proper folding of the mutant molecule. Rather, the Ala221Val substitution appears to interfere with the stability of the activated FVa mutant, the reduced stability possibly explaining the deficiency symptoms associated with the mutation.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Elisabetta Profumo ◽  
Brigitta Buttari ◽  
Lavinia Tinaburri ◽  
Daniela D’Arcangelo ◽  
Maurizio Sorice ◽  
...  

We have previously demonstrated that human heat shock protein 90 (HSP90), an intracellular self protein, is the target of cellular and humoral autoimmune responses in patients with carotid atherosclerosis. In this study, we evaluated in vitro whether oxidative stress, a feature of atherosclerotic plaque, alters HSP90 expression in endothelial cells, thus inducing surface localization of this molecule and whether the antioxidant compound 7,8-dihydroxy-4-methylcoumarin (7,8-DHMC) is able to prevent oxidative stress-induced alterations of HSP90 localization. By the use of flow cytometry, immunofluorescence, enzyme-linked immunosorbent assay, and semiquantitative reverse-transcription polymerase chain reaction, we demonstrated that exposure of human umbilical vein endothelial cells (HUVEC) to the prooxidant compound H2O2 upregulated HSP90 surface expression and reduced its secretion without altering HSP90 gene expression and intracytoplasmic protein levels. Pretreatment of HUVEC with 7,8-DHMC prevented H2O2-induced alterations of HSP90 cellular distribution and secretion. Our results suggest that the strong oxidative conditions of atherosclerotic plaques promote the upregulation of HSP90 surface expression on endothelial cells, thus rendering the protein a possible target of autoimmune reactions. The antioxidant 7,8-DHMC, by preventing oxidative-stress-triggered HSP90 surface upregulation, may be useful to counteract possible autoreactive reactions to HSP90.


Sign in / Sign up

Export Citation Format

Share Document