Impact of TCR status and genotype on outcome in adult T-cell acute lymphoblastic leukemia: a LALA-94 study

Blood ◽  
2005 ◽  
Vol 105 (8) ◽  
pp. 3072-3078 ◽  
Author(s):  
Vahid Asnafi ◽  
Agnes Buzyn ◽  
Xavier Thomas ◽  
Francoise Huguet ◽  
Norbert Vey ◽  
...  

AbstractPatients with T-cell acute lymphoblastic leukemias (T-ALLs) within the Leucémies Aiguës Lymphoblastiques de l'Adulte-94 (LALA-94) prospective trial were treated with a 4-drug per 4-week induction, with intermediate-dose cytarabine and mitoxantrone salvage treatment for patients not achieving complete remission (CR) in 1 course. Only the latter received allografts, if possible, thus providing an informative setting for assessing early response. Representative patients with T-ALL (91 patients) were classified into surface T-cell receptor (TCR)–expressing T-ALL patients (TCRαβ+ or TCRγδ+), pre-αβ T-ALL patients (cTCRβ+, TCR–), and immature (IM) cTCRβ–, TCR– T-ALL patients; 81 patients underwent genotyping for SIL-TAL1, CALM-AF10, HOX11, and HOX11L2. Overall, CR was obtained in 81 (89%) patients; relapse rate was 62% at 4 years and overall survival (OS) rate was 38%. CR rate was significantly lower in IM T-ALL patients after 1 course (45% vs 87%; P < .001) and after salvage (74% vs 97%; P = .002), with the latter inducing a higher rate of CR (9 [64%] of 14) than initial induction. Once CR was obtained, cumulative relapse rates were similar for IM, pre-αβ, and TCR+ T-ALL patients (P = .51), but were higher in HOX11L2 (83%) and SIL-TAL1 (82%) T-ALL patients compared with other genetic subgroups (48%; P = .05). This was associated with an inferior OS for HOX11L2 T-ALLs (13% vs 47% in HOX11L2-T-ALLs; P = .009). The majority of patients with HOX11 T-ALL underwent allografting, predominantly in second CR, but were not associated with a superior OS. Both TCR and genotypic stratification can therefore contribute to risk-adapted management of adult T-ALLs.

2012 ◽  
Vol 53 (7) ◽  
pp. 1425-1428 ◽  
Author(s):  
Monika D. Kraszewska ◽  
Małgorzata Dawidowska ◽  
Maria Kosmalska ◽  
Łukasz Sędek ◽  
Władysław Grzeszczak ◽  
...  

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4259-4259
Author(s):  
Hanna Makuch-Lasica ◽  
Miroslaw Majewski ◽  
Grazyna Nowak ◽  
Iwona Kania ◽  
Monika Lewandowska ◽  
...  

Abstract B-cell acute lymphoblastic leukemia (B-ALL) results from clonal expansion of B-lymphocytes derived at different stage of differentiation. Immunoglobulin (Ig) heavy chain genes (IGH), light chain kappa (IGK) and lambda (IGL) genes rearrange during early B-lymphocyte differentiation. T-cell receptor (TCR) genes are considered to rearrange exclusively in normal T lymphocytes, but malignant B lymphoblasts often contain crosslineage rearranged TCR genes. The clonal leukemic cell population, carrying identical copies of rearranged Ig and/or TCR genes, can be identified above 95% of B-ALL patients. In our study Ig/TCR genes rearrangements were detected by multiplex PCR with heteroduplex analysis according to BIOMED-2 protocol. DNA was isolated by column method from mononuclear cells isolated from the peripheral blood/bone marrow samples obtained at initial diagnosis from 36 B-ALL patients. Monoclonal rearrangements of Ig genes were detected in 100% (36/36) of patients. The most frequent rearrangements were observed in IGH genes (94%), including complete IGHV-IGHJ in 83% (30/36) and incomplete IGHD-IGHJ in 22% (8/36) of patients. Among complete IGH rearrangements 2 biallelic rearrangements in IGHV1-7 and IGHJ genes (FR3) were found. Ig light chain genes rearrangements were identified in 26 patients (72%) (including 64% of IGKV-IGKJ, 47% IGKV/intron-Kde, and 22% IGLV-IGLJ) what indicates active receptor editing occurring during B lymphoblasts leukemogenesis. Crosslineage TCR genes rearrangements were found in 97% (35/36) of patients. TCR beta genes rearrangements were detected in 47% (17/36) of patients (complete TRBV-TRBJ in 25% (9/36), TRBD-TRBJ in 6/36 patients - 17%). TRGV-TRGV in 58% (21/36), TRDV-TRDJ in 58% (21/36); 17 monoallelic and 4 biallelic were found. The inactivation of potentially functional IGKV-IGKJ by secondary rearrangements indicates active receptor editing. Our data describe IGK and IGL genes rearrangements incidence, present allelic exclusion and active receptor editing in B-ALL patients. B-ALL lymphoblast undergoes rearrangement on the same IGK allele before IGL genes rearrangement occur. The data may suggest the possible of antigens in B-ALL immunopathogenesis. The results indicate also rearranged IGK, IGL and TCR genes as stable molecular marker for monitoring MRD in B-ALL.


2019 ◽  
Author(s):  
Shahan Mamoor

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive form of leukemia with inferior treatment outcomes. The T-cell receptor (TCR) exists in two major forms: the 𝛂βTCR or the γδTCR, and 20-35% of T-ALL cases express either the 𝛂βTCR or the γδTCR (T-ALL𝛂β or T-ALLγδ). Using a published dataset from a cohort of 14 TCR+ T-ALL patients, I found a series of genes that are differentially expressed among patients T-ALL𝛂β or T-ALLγδ. Any number of these differentially expressed genes may be a scientifically and/or clinically actionable target in TCR+ T-ALL.


Sign in / Sign up

Export Citation Format

Share Document