scholarly journals The hydration state of human red blood cells and their susceptibility to invasion by Plasmodium falciparum

Blood ◽  
2005 ◽  
Vol 105 (12) ◽  
pp. 4853-4860 ◽  
Author(s):  
Teresa Tiffert ◽  
Virgilio L. Lew ◽  
Hagai Ginsburg ◽  
Miriam Krugliak ◽  
Laure Croisille ◽  
...  

Abstract In most inherited red blood cell (RBC) disorders with high gene frequencies in malaria-endemic regions, the distribution of RBC hydration states is much wider than normal. The relationship between the hydration state of circulating RBCs and protection against severe falciparum malaria remains unexplored. The present investigation was prompted by a casual observation suggesting that falciparum merozoites were unable to invade isotonically dehydrated normal RBCs. We designed an experimental model to induce uniform and stable isotonic volume changes in RBC populations from healthy donors by increasing or decreasing their KCl contents through a reversible K+ permeabilization pulse. Swollen and mildly dehydrated RBCs were able to sustain Plasmodium falciparum cultures with similar efficiency to untreated RBCs. However, parasite invasion and growth were progressively reduced in dehydrated RBCs. In a parallel study, P falciparum invasion was investigated in density-fractionated RBCs from healthy subjects and from individuals with inherited RBC abnormalities affecting primarily hemoglobin (Hb) or the RBC membrane (thalassemias, hereditary ovalocytosis, xerocytosis, Hb CC, and Hb CS). Invasion was invariably reduced in the dense cell fractions in all conditions. These results suggest that the presence of dense RBCs is a protective factor, additional to any other protection mechanism prevailing in each of the different pathologies. (Blood. 2005; 105:4853-4860)

2009 ◽  
Vol 53 (10) ◽  
pp. 4339-4344 ◽  
Author(s):  
Fausta Omodeo-Salè ◽  
Lucia Cortelezzi ◽  
Nicoletta Basilico ◽  
Manolo Casagrande ◽  
Anna Sparatore ◽  
...  

ABSTRACT Two new quinolizidinyl-alkyl derivatives of 7-chloro-4-aminoquinoline, named AM-1 and AP4b, which are highly effective in vitro against both the D10 (chloroquine [CQ] susceptible) and W2 (CQ resistant) strains of Plasmodium falciparum and in vivo in the rodent malaria model, have been studied for their ability to bind to and be internalized by normal or parasitized human red blood cells (RBC) and for their effects on RBC membrane stability. In addition, an analysis of the heme binding properties of these compounds and of their ability to inhibit beta-hematin formation in vitro has been performed. Binding of AM1 or AP4b to RBC is rapid, dose dependent, and linearly related to RBC density. Their accumulation in parasitized RBC (pRBC) is increased twofold compared to levels in normal RBC. Binding of AM1 or AP4b to both normal and pRBC is higher than that of CQ, in agreement with the lower pKa and higher lipophilicity of the compounds. AM1 or AP4b is not hemolytic per se and is less hemolytic than CQ when hemolysis is accelerated (induced) by hematin. Moreover, AM-1 and AP4b bind heme with a stoichiometry of interaction similar to that of CQ (about 1:1.7) but with a lower affinity. They both inhibit dose dependently the formation of beta-hematin in vitro with a 50% inhibitory concentration comparable to that of CQ. Taken together, these results suggest that the antimalarial activity of AM1 or AP4b is likely due to inhibition of hemozoin formation and that the efficacy of these compounds against the CQ-resistant strains can be ascribed to their hydrophobicity and capacity to accumulate in the vacuolar lipid (elevated lipid accumulation ratios).


Parasitology ◽  
2000 ◽  
Vol 120 (3) ◽  
pp. 225-235 ◽  
Author(s):  
L. E. RODRIGUEZ ◽  
M. URQUIZA ◽  
M. OCAMPO ◽  
J. SUAREZ ◽  
H. CURTIDOR ◽  
...  

Solid experimental evidence indicates that EBA-175 is used as a ligand by the Plasmodium falciparum merozoite to bind to human RBC, via different binding processing fragments. Using synthetic peptides and specific receptor-ligand interaction methodology, we have identified 6 high-activity binding sequences from the EBA-175 CAMP strain; peptide 1758 (KSYGTPDNIDKNMSLIHKHN), located in the so-called region I for which no binding activity has been reported before, peptides 1779 (NIDRIYDKNLLMIKEHILAI) and 1783 (HRNKKNDKLYRDEWWKVIKK), located in region II, in a sub-region known as 5′ Cys F2, previously reported as being a binding region, and peptides 1814 (DRNSNTLHLKDYRNEENERH), 1815 (YTNQNINISQERDLQKHGFH) and 1818 (NNNFNNIPSRYNLYDKKLDL), in region III–V where antibodies inhibit merozoite invasion of erythrocytes. The affinity constants were between 60 and 180 nM and the critical amino acids involved in the binding were identified. The binding of these peptides to enzyme-treated RBC was analysed; binding of peptide 1814, located in the III–V region, was found to be sialic acid dependent. Some of these high binding peptides were able to inhibit in vitro merozoite invasion and to block the binding of recombinant RII-EBA to RBC. Several of these peptides are located in regions recognized by protective immune clusters of merozoites (ICMs) eluted antibodies.


2009 ◽  
Vol 88 (1) ◽  
pp. 61-74 ◽  
Author(s):  
Gabriela Arevalo-Pinzon ◽  
Hernando Curtidor ◽  
Claudia Reyes ◽  
Martha Pinto ◽  
Carolina Vizcaíno ◽  
...  

Peptides ◽  
2014 ◽  
Vol 53 ◽  
pp. 210-217 ◽  
Author(s):  
Hernando Curtidor ◽  
Liliana C. Patiño ◽  
Gabriela Arévalo-Pinzón ◽  
Magnolia Vanegas ◽  
Manuel E. Patarroyo ◽  
...  

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2662-2662
Author(s):  
Victoria Tutaeva ◽  
J. Will Thompson ◽  
Matthew W. Foster ◽  
M. Arthur Moseley ◽  
Stephen P. Holly ◽  
...  

Abstract Abstract 2662 Red cell adhesion appears to be a critical contributor to vaso-occlusion in sickle cell disease (SCD). We have been interested in intra-erythrocytic signaling events that can affect sickle red cell (SS RBC) adhesion and thereby stimulate vaso-occlusion. One such agonist-inducible signaling pathway is that of the β2 adrenergic receptor. β2 adrenergic receptor signaling pathways, involving both protein kinase A and the small guanosine triphosphatase Rap1, have been shown to affect multiple RBC adhesion receptors. Therefore, we sought to determine whether specific post-translational modifications of RBC membrane and intracellular proteins were associated with the signaling pathways affecting adhesion. Protein S-nitrosylation, a post-translational modification of cysteine thiol by nitric oxide (NO), is one of several post-translational protein modifications that can regulate diverse cell signaling pathways. Given the many reports of abnormal NO biology in SCD, we investigated how S-nitrosylation of erythrocyte proteins affects molecules involved in regulation of SS RBC adhesion. First, we identified RBC membrane proteins that underwent S-nitrosylation in RBCs from healthy donors (n=2) and SCD patients (n=6; three patients treated with hydroxyurea [HU] and three without HU treatment). Highly purified RBC membrane ghosts were pretreated with or without 0.05 mM CysNO (to promote S-nitrosocysteine formation) for 10 min, and S-nitrosylated proteins were isolated using the resin-assisted capture (SNO-RAC) method (Forrester et al. 2009). Captured S-nitrosylated proteins were visualized by SDS-PAGE, and protein identification was accomplished via an in-situ digestion of the bead-bound proteins, release of the residual bead-bound peptides, and analysis using nanoscale capillary liquid chromatography coupled to high resolution, accurate mass tandem mass spectrometry (LC/MS/MS). A number of proteins underwent S-nitrosylation in both normal and SS RBCs. Among these, MS analysis indicated that Rap1, which has previously been shown to affect SS RBC adhesion to laminin, underwent S-nitrosylation much more extensively in SS than in normal RBCs. These data were confirmed by SNO-RAC followed by immunoblotting. Using a RalGDS Ras-binding domain pull-down assay, we further quantitated the amount of detectable activated Rap1 in highly purified preparations of normal and SS RBCs (lacking either contaminating leukocytes or platelets), before and after RBC loading with NO. Active Rap1 was undetectable or minimally present in RBCs from healthy donors (n=6) but easily detectable in all SS RBCs (n=4). Loading of RBCs with NO in these same samples led to an increased amount of detectable activated Rap1 in both normal and SS RBCs. Finally, we found that patients admitted for pain episodes (n=3) had higher levels of Rap1 nitrosylation and activity than patients in steady state (n=5). In summary, we have found that Rap1, a protein that acts downstream of adrenergic signaling in RBCs, undergoes S-nitrosylation and that this modification is associated with increased Rap1 activity. Most importantly, SS RBCs contain significantly more S-nitrosylated Rap1 and activated Rap1 than do normal RBCs, and this difference in content of active Rap1 is more pronounced in patients with ongoing vaso-occlusion. Disclosures: Telen: GlycoMimetics: Consultancy.


1996 ◽  
Vol 18 (10) ◽  
pp. 515-526 ◽  
Author(s):  
MAURICIO URQUIZA ◽  
LUIS E. RODRIGUEZ ◽  
JORGE E. SUAREZ ◽  
FANNY GUZMÁN ◽  
MARISOL OCAMPO ◽  
...  

2012 ◽  
Vol 6 (06) ◽  
pp. 536-541 ◽  
Author(s):  
Emanuela Ferru ◽  
Anntonella Pantaleo ◽  
Francesco Turrini

Introduction: We propose a new method for the selective labeling, isolation and electrophoretic analysis of the Plasmodium falciparum protein exposed on the erythrocyte cell surface. Historically, membrane surface proteins have been isolated using a surface biotinylation followed by capture of biotin-conjugated protein via an avidin/streptavidin-coated solid support. The major drawback of the standard methods has been the labeling of internal proteins due to fast internalization of biotin. Methodology: To solve this problem, we used a biotin label that does not permeate through the membrane. As a further precaution to avoid the purification of non surface exposed proteins, we directly challenged whole labeled cells with avidin coated beads and then solubilized them using non ionic detergents. Results: A marked enrichment of most of the RBC membrane proteins known to face the external surface of the membrane validated the specificity of the method; furthermore, only small amounts of haemoglobin and cytoskeletal proteins were detected. A wide range of P. falciparum proteins were additionally described to be exposed on the erythrocyte surface. Some of them have been previously observed and used as vaccine candidates while a number of newly described antigens have been presently identified. Those antigens require further characterization and validation with additional methods. Conclusion: Surface proteins preparations were very reproducible and identification of proteins by mass spectrometry has been demonstrated to be feasible and effective.


2019 ◽  
Author(s):  
Marion Koch ◽  
Jaimini Cegla ◽  
Ben Jones ◽  
Yuning Lu ◽  
Ziad Mallat ◽  
...  

ABSTRACTMalaria disease commences when blood-stage parasites, called merozoites, invade human red blood cells (RBCs). Whilst the process of invasion is traditionally seen as being entirely merozoite-driven, emerging data suggests RBC biophysical properties markedly influence invasion. Cholesterol is a major determinant of cell membrane biophysical properties. We set out to assess whether cholesterol content in the RBC membrane affects susceptibility to merozoite invasion. Here we demonstrate that RBC bending modulus (a measure of deformability) is markedly affected by artificial modulation of cholesterol content and negatively correlated with merozoite invasion efficiency. Contextualising this observation, we tested a mouse model of hypercholesterolemia and human clinical samples from patients with a range of serum cholesterol concentrations for parasite susceptibility. Hypercholesterolaemia in both human and murine subjects had little effect merozoite invasion efficiency. Furthermore, on testing, RBC cholesterol content in both murine and human hypercholesterolaemia settings was found to be unchanged from normal controls. Serum cholesterol is, therefore, unlikely to impact on RBC susceptibility to merozoite entry. Our work, however, suggests that native polymorphisms that affect RBC membrane lipid composition would be expected to affect parasite entry. This supports investigation of RBC biophysical properties in endemic settings, which may yet identify naturally protective lipid-related polymorphisms.


2011 ◽  
Vol 58 (4) ◽  
Author(s):  
Magdalena Kaczmarska ◽  
Zofia Kopyściańska ◽  
Maria Fornal ◽  
Tomasz Grodzicki ◽  
Krzysztof Matlak ◽  
...  

We studied the influence of low doses of γ radiation (from 0.04 to 1.8 mGy) on the stability of human red blood cells (RBC) from healthy donors and diabetic patients using absorption spectroscopy. Because of the alteration of many enzymatic pathways in diabetic RBCs resulting in strong modification of the lipid and protein membrane components one could expect that the ionizing γ-radiation should influence the stability of the healthy and diabetic cells in a different way. Indeed, distinct discontinuities and monotonic changes of hemolysis detected in the healthy and diabetic RBCs suggest that various enzymatic and chemical processes are activated in these membranes by γ radiation. Mössbauer measurements showed that only the highest applied dose of γ radiation caused modification of hemoglobin in both types of RBCs.


Sign in / Sign up

Export Citation Format

Share Document