scholarly journals A new method for the capture of surface proteins in Plasmodium falciparum parasitized erythrocyte

2012 ◽  
Vol 6 (06) ◽  
pp. 536-541 ◽  
Author(s):  
Emanuela Ferru ◽  
Anntonella Pantaleo ◽  
Francesco Turrini

Introduction: We propose a new method for the selective labeling, isolation and electrophoretic analysis of the Plasmodium falciparum protein exposed on the erythrocyte cell surface. Historically, membrane surface proteins have been isolated using a surface biotinylation followed by capture of biotin-conjugated protein via an avidin/streptavidin-coated solid support. The major drawback of the standard methods has been the labeling of internal proteins due to fast internalization of biotin. Methodology: To solve this problem, we used a biotin label that does not permeate through the membrane. As a further precaution to avoid the purification of non surface exposed proteins, we directly challenged whole labeled cells with avidin coated beads and then solubilized them using non ionic detergents. Results: A marked enrichment of most of the RBC membrane proteins known to face the external surface of the membrane validated the specificity of the method; furthermore, only small amounts of haemoglobin and cytoskeletal proteins were detected. A wide range of P. falciparum proteins were additionally described to be exposed on the erythrocyte surface. Some of them have been previously observed and used as vaccine candidates while a number of newly described antigens have been presently identified. Those antigens require further characterization and validation with additional methods. Conclusion: Surface proteins preparations were very reproducible and identification of proteins by mass spectrometry has been demonstrated to be feasible and effective.

2007 ◽  
Vol 388 (1) ◽  
pp. 15-24 ◽  
Author(s):  
Luis Eduardo Rodriguez ◽  
Ricardo Vera ◽  
John Valbuena ◽  
Hernando Curtidor ◽  
Javier Garcia ◽  
...  

Abstract The Plasmodium falciparum ring-erythrocyte surface antigen (RESA)-like putative protein was identified and characterised. PCR and RT-PCR assays revealed that the gene encoding this protein was both present and being transcribed in P. falciparum strain FCB-2 16 h after erythrocyte invasion. Indirect immunofluorescence studies detected this protein in infected erythrocyte (IE) cytosol in dense fluorescent granules similar to Maurer's clefts at 16–20 h (parasites in ring and trophozoite stages) and very strongly on IE membranes at 22 h, suggesting that it is synthesised during early ring stages (16 h) and transported to the infected red blood cell (RBC) membrane surface during the trophozoite stage (22 h). Western blotting showed that antisera produced against polymerised synthetic peptides of this protein recognised a 72-kDa band in P. falciparum schizont lysate. P. falciparum RESA-like peptides used in normal RBC binding assays revealed that peptides 30326 (101NAEKI LGFDD KNILE ALDLFY120), 30334 (281RVTWK KLRTK MIKAL KKSLTY300) and 30342 (431SSPQR LKFTA GGGFC GKLRNY450) bind with high activity and saturability, presenting nM affinity constants. These peptides contain α-helical structural elements, as determined by circular dichroism, and inhibit P. falciparum in vitro invasion of normal RBCs by up to 91%, suggesting that some RESA-like protein regions are involved in intra-erythrocyte stage P. falciparum invasion.


2002 ◽  
Vol 70 (12) ◽  
pp. 7013-7021 ◽  
Author(s):  
Mohamed S. Abdel-Latif ◽  
Ayman Khattab ◽  
Christoph Lindenthal ◽  
Peter G. Kremsner ◽  
Mo-Quen Klinkert

ABSTRACT Antibodies from individuals living in areas where malaria is endemic are known to react with parasite-derived erythrocyte surface proteins. The major immunogenic and clonally variant surface antigen described to date is Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP-1), which is encoded by members of the multicopy var gene family. We report here that rifin proteins (RIF proteins), belonging to the largest known family of variable infected erythrocyte surface-expressed proteins, are also naturally immunogenic. Recombinant RIF proteins were used to analyze the antibody responses of individuals living in an area of intense malaria transmission. Elevated anti-rifin antibody levels were detected in the majority of the adult population tested, whereas the prevalence of such antibodies was much lower in malaria-exposed children. Despite the high degree of diversity between rif sequences and the high gene copy number, it appears that P. falciparum infections can induce antibodies that cross-react with several variant rifin molecules in many parasite isolates in a given community, and the immune response is most likely to be stable over time in a hyperendemic area. The protein was localized by fluorescence microscopy on the membrane of ring and young trophozoite-infected erythrocytes with antibodies from human immune sera with specificities for recombinant RIF protein.


Symmetry ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1221
Author(s):  
Ziad Omran ◽  
Chloe Whitehouse ◽  
Majed Halwani ◽  
Mazin A. Zamzami ◽  
Othman A. Baothman ◽  
...  

Cancer is the second leading cause of death worldwide. Chemotherapy has shown reasonable success in treating cancer. However, multidrug resistance (MDR), a phenomenon by which cancerous cells become resistant to a broad range of functionally and structurally unrelated chemotherapeutic agents, is a major drawback in the effective use of chemotherapeutic agents in the clinic. Overexpression of P-glycoprotein (Pgp) is a major cause of MDR in cancer as it actively effluxes a wide range of structurally and chemically unrelated substrates, including chemotherapeutic agents. Interestingly, Pgp is also overexpressed in the endothelial cells of blood–brain barrier (BBB) restricting the entry of 98% small molecule drugs to the brain. The efficacy of Pgp is sensitive to any impairment of the membrane structure. A small increase of 2% in the membrane surface tension, which can be caused by a very low drug concentration, is enough to block the Pgp function. We demonstrate in this work by mathematical equations that the incorporation of drugs does increase the surface tension as expected, and the mechanism of endocytosis dissipates any increase in surface tension by augmenting the internalisation of membrane per unit of time, such that an increase in the surface tension of about 2% can be dissipated within only 4.5 s.


Author(s):  
Gerald B. Feldewerth

In recent years an increasing emphasis has been placed on the study of high temperature intermetallic compounds for possible aerospace applications. One group of interest is the B2 aiuminides. This group of intermetaliics has a very high melting temperature, good high temperature, and excellent specific strength. These qualities make it a candidate for applications such as turbine engines. The B2 aiuminides exist over a wide range of compositions and also have a large solubility for third element substitutional additions, which may allow alloying additions to overcome their major drawback, their brittle nature.One B2 aluminide currently being studied is cobalt aluminide. Optical microscopy of CoAl alloys produced at the University of Missouri-Rolla showed a dramatic decrease in the grain size which affects the yield strength and flow stress of long range ordered alloys, and a change in the grain shape with the addition of 0.5 % boron.


2004 ◽  
Vol 4 (5-6) ◽  
pp. 215-222 ◽  
Author(s):  
A.R. Costa ◽  
M.N. de Pinho

Membrane fouling by natural organic matter (NOM), namely by humic substances (HS), is a major problem in water treatment for drinking water production using membrane processes. Membrane fouling is dependent on membrane morphology like pore size and on water characteristics namely NOM nature. This work addresses the evaluation of the efficiency of ultrafiltration (UF) and Coagulation/Flocculation/UF performance in terms of permeation fluxes and HS removal, of the water from Tagus River (Valada). The operation of coagulation with chitosan was evaluated as a pretreatment for minimization of membrane fouling. UF experiments were carried out in flat cells of 13.2×10−4 m2 of membrane surface area and at transmembrane pressures from 1 to 4 bar. Five cellulose acetate membranes were laboratory made to cover a wide range of molecular weight cut-off (MWCO): 2,300, 11,000, 28,000, 60,000 and 75,000 Da. Severe fouling is observed for the membranes with the highest cut-off. In the permeation experiments of raw water, coagulation prior to membrane filtration led to a significant improvement of the permeation performance of the membranes with the highest MWCO due to the particles and colloidal matter removal.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 513
Author(s):  
Anna Rabajczyk ◽  
Maria Zielecka ◽  
Krzysztof Cygańczuk ◽  
Łukasz Pastuszka ◽  
Leszek Jurecki

A recent trend in the field of membrane research is the incorporation of nanoparticles into polymeric membranes, which could produce synergistic effects when using different types of materials. This paper discusses the effect of the introduction of different nanometals such as silver, iron, silica, aluminum, titanium, zinc, and copper and their oxides on the permeability, selectivity, hydrophilicity, conductivity, mechanical strength, thermal stability, and antiviral and antibacterial properties of polymeric membranes. The effects of nanoparticle physicochemical properties, type, size, and concentration on a membrane’s intrinsic properties such as pore morphology, porosity, pore size, hydrophilicity/hydrophobicity, membrane surface charge, and roughness are discussed, and the performance of nanocomposite membranes in terms of flux permeation, contaminant rejection, and antifouling capability are reviewed. The wide range of nanocomposite membrane applications including desalination and removal of various contaminants in water-treatment processes are discussed.


2006 ◽  
Vol 281 (42) ◽  
pp. 31517-31527
Author(s):  
Christian W. Kauth ◽  
Ute Woehlbier ◽  
Michaela Kern ◽  
Zeleke Mekonnen ◽  
Rolf Lutz ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
pp. 241
Author(s):  
Juliane Kuhl ◽  
Andreas Ding ◽  
Ngoc Tuan Ngo ◽  
Andres Braschkat ◽  
Jens Fiehler ◽  
...  

Personalized medical devices adapted to the anatomy of the individual promise greater treatment success for patients, thus increasing the individual value of the product. In order to cater to individual adaptations, however, medical device companies need to be able to handle a wide range of internal processes and components. These are here referred to collectively as the personalization workload. Consequently, support is required in order to evaluate how best to target product personalization. Since the approaches presented in the literature are not able to sufficiently meet this demand, this paper introduces a new method that can be used to define an appropriate variety level for a product family taking into account standardized, variant, and personalized attributes. The new method enables the identification and evaluation of personalizable attributes within an existing product family. The method is based on established steps and tools from the field of variant-oriented product design, and is applied using a flow diverter—an implant for the treatment of aneurysm diseases—as an example product. The personalization relevance and adaptation workload for the product characteristics that constitute the differentiating product properties were analyzed and compared in order to determine a tradeoff between customer value and personalization workload. This will consequently help companies to employ targeted, deliberate personalization when designing their product families by enabling them to factor variety-induced complexity and customer value into their thinking at an early stage, thus allowing them to critically evaluate a personalization project.


2014 ◽  
Vol 4 (1) ◽  
Author(s):  
Kyousuke Kobayashi ◽  
Ryo Takano ◽  
Hitoshi Takemae ◽  
Tatsuki Sugi ◽  
Akiko Ishiwa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document