Dasatinib (BMS-354825) targets an earlier progenitor population than imatinib in primary CML but does not eliminate the quiescent fraction

Blood ◽  
2006 ◽  
Vol 107 (11) ◽  
pp. 4532-4539 ◽  
Author(s):  
Mhairi Copland ◽  
Ashley Hamilton ◽  
Lucy J. Elrick ◽  
Janet W. Baird ◽  
Elaine K. Allan ◽  
...  

AbstractDasatinib (BMS-354825), a novel dual SRC/BCR-ABL kinase inhibitor, exhibits greater potency than imatinib mesylate (IM) and inhibits the majority of kinase mutations in IM-resistant chronic myeloid leukemia (CML). We have previously demonstrated that IM reversibly blocks proliferation but does not induce apoptosis of primitive CML cells. Here, we have attempted to overcome this resistance with dasatinib. Primitive IM-resistant CML cells showed only single-copy BCR-ABL but expressed significantly higher BCR-ABL transcript levels and BCR-ABL protein compared with more mature CML cells (P = .031). In addition, CrKL phosphorylation was higher in the primitive CD34+CD38– than in the total CD34+ population (P = .002). In total CD34+ CML cells, IM inhibited phosphorylation of CrKL at 16 but not 72 hours, consistent with enrichment of an IM-resistant primitive population. CD34+CD38– CML cells proved resistant to IM-induced inhibition of CrKL phosphorylation and apoptosis, whereas dasatinib led to significant inhibition of CrKL phosphorylation. Kinase domain mutations were not detectable in either IM or dasatinib-resistant primitive CML cells. These data confirm that dasatinib is more effective than IM within the CML stem cell compartment; however, the most primitive quiescent CML cells appear to be inherently resistant to both drugs.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3138-3138
Author(s):  
Benjamin Hanfstein ◽  
Niklas Westhoff ◽  
Rüdiger Hehlmann ◽  
Susanne Saussele ◽  
Michael Lauseker ◽  
...  

Abstract Introduction: The clonal selection of a mutant BCR-ABL positive clone can be observed in about one of two patients with imatinib-resistant chronic myeloid leukemia (CML). The early detection of BCR-ABL kinase domain mutations is crucial, since it allows to change the tyrosine kinase inhibitor (TKI) regimen in a timely manner and may therefore prevent disease progression and the accumulation of further genetic lesions. European LeukemiaNet (ELN) recommendations suggest a mutation analysis if optimal response criteria are not achieved at 3, 6, 12 or 18 months, or whenever a loss of optimal response occurs (Soverini et al., Blood 2011). Several attempts have been made to derive this indication from a specific increase of BCR-ABL levels. Here we report on the correlation of a rise in BCR-ABL transcript levels and the prevalence of BCR-ABL kinase domain mutations in imatinib-treated patients of the CML-Study IV. Methods: A total of 1,173 patients were enrolled until 2009 and randomized to one of four imatinib-based treatment arms. BCR-ABLIS of 988 patients was determined in 7,876 samples by quantitative RT-PCR in the central laboratory (median sample number per patient: 8.4, range 1-37; median follow up: 34 months, range 0-86), representing the eligible patients for the study. Thereby, the estimated intra-laboratory variance is assumed to be about 20%. A first rise of BCR-ABLIS to at least two-fold and >0.1% between two samples of a patient's molecular course defined a sample suspected of bearing a mutant BCR-ABL positive clone. A mutation analysis was performed on this critical sample by direct sequencing of ABL exons 4 to 10. Results: A critical rise in BCR-ABLIS was observed in 231 of 988 patients (23%) after a median of 15.2 months on treatment (range 2.8-59.4). In the corresponding sample 33 mutant clones could be detected in 31 patients (13%). Thereby a steeper rise of BCR-ABLIS was correlated with a higher incidence of BCR-ABL mutations in the respective group (table). A total of 18 different mutations could be detected, the most frequent were: M244V, n=7 (21%); E255K, n=4 (12%); T315I, n=3 (9%); L248V, G250E, L387M and F486S, n=2 (6%), respectively. Mutations occur in a substantial proportion (8%) of patients with an only 2 to 3-fold rise of BCR-ABLIS transcript levels (table). Therefore, the most sensitive cut-off should be applied and mutation analysis may be triggered by a doubling of BCR-ABL transcripts at levels >0.1% IS. Conclusion: BCR-ABL kinase domain mutations occur already in a substantial proportion of patients with a doubling of BCR-ABL transcript levels, which should determine mutation analysis. Table 1. Rise of BCR-ABL expression Patients (n) Patients with BCR-ABL mutations (n) Patients with BCR-ABL mutations (%) Inter-sample interval(median, days) 2 to 3-fold 72 6 8.3 98 3 to 5-fold 50 3 6.0 100 5 to 10-fold 39 4 10.3 99 10 to 100-fold 49 10 20.4 98 > 100-fold 21 8 38.1 125 > 2-fold (total) 231 31 13.4 101 Disclosures Hanfstein: Novartis: Research Funding; Bristol-Myers Squibb: Honoraria. Hehlmann:Novartis: Research Funding; Bristol-Myers Squibb: Research Funding. Saussele:Novartis: Honoraria, Research Funding, Travel Other; Bristol-Myers Squibb: Honoraria, Research Funding, Travel, Travel Other; Pfizer: Honoraria, Travel, Travel Other. Schnittger:MLL Munich Leukemia Laboratory: Equity Ownership. Neubauer:MedUpdate: Honoraria, Speakers Bureau. Kneba:Novartis: Consultancy, Equity Ownership, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Pfirrmann:Novartis: Consultancy; Bristol-Myers Squibb: Honoraria. Hochhaus:Pfizer: Consultancy, Research Funding; ARIAD: Honoraria, Research Funding; Bristol-Myers Squibb: Consultancy, Honoraria; Novartis: Consultancy, Honoraria, Research Funding. Müller:Novartis: Honoraria, Research Funding; Bristol Myers Squibb: Honoraria, Research Funding; ARIAD: Honoraria, Research Funding; Pfizer: Honoraria, Research Funding.


Blood ◽  
2007 ◽  
Vol 110 (7) ◽  
pp. 2242-2249 ◽  
Author(s):  
Thomas O'Hare ◽  
Christopher A. Eide ◽  
Michael W. N. Deininger

Mutations in the kinase domain (KD) of BCR-ABL are the most prevalent mechanism of acquired imatinib resistance in patients with chronic myeloid leukemia (CML). Here we examine predisposing factors underlying acquisition of KD mutations, evidence for acquisition of mutations before and during therapy, and whether the detection of a KD mutation universally implies resistance. We also provide a perspective on how the second-line Abl inhibitors dasatinib and nilotinib are faring in the treatment of imatinib-resistant CML, especially in relation to specific KD mutations. We discuss the growing importance of the multi-inhibitor–resistant 315T>I mutant and the therapeutic potential that a 315T>I inhibitor would have. Last, we assess the potential of Abl kinase inhibitor combinations to induce stable responses even in advanced CML and interpret the emerging data in the context of CML pathogenesis.


Blood ◽  
2003 ◽  
Vol 101 (11) ◽  
pp. 4611-4614 ◽  
Author(s):  
Amie S. Corbin ◽  
Paul La Rosée ◽  
Eric P. Stoffregen ◽  
Brian J. Druker ◽  
Michael W. Deininger

Abstract Imatinib mesylate is a selective Bcr-Abl kinase inhibitor, effective in the treatment of chronic myelogenous leukemia. Most patients in chronic phase maintain durable responses; however, many in blast crisis fail to respond, or relapse quickly. Kinase domain mutations are the most commonly identified mechanism associated with relapse. Many of these mutations decrease the sensitivity of the Abl kinase to imatinib, thus accounting for resistance to imatinib. The role of other mutations in the emergence of resistance has not been established. Using biochemical and cellular assays, we analyzed the sensitivity of several mutants (Met244Val, Phe311Leu, Phe317Leu, Glu355Gly, Phe359Val, Val379Ile, Leu387Met, and His396Pro/Arg) to imatinib mesylate to better understand their role in mediating resistance.While some Abl mutations lead to imatinib resistance, many others are significantly, and some fully, inhibited. This study highlights the need for biochemical and biologic characterization, before a resistant phenotype can be ascribed to a mutant.


2016 ◽  
Vol 16 ◽  
pp. S60
Author(s):  
Nancy Escobar ◽  
Mariana Herrera ◽  
Luisa Rosales ◽  
Silvana Torselli ◽  
Julio Caceres ◽  
...  

HemaSphere ◽  
2019 ◽  
Vol 3 (S1) ◽  
pp. 873-874
Author(s):  
C. Asadov ◽  
A. Hasanova ◽  
A. Shirinova ◽  
N. Karimova ◽  
Z. Alimirzoeva

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4589-4589
Author(s):  
Corynn Kasap ◽  
Christopher Weier ◽  
Neil P. Shah

Abstract The optimal management of patients with chronic myeloid leukemia (CML) is increasingly reliant upon molecular studies. Loss of response to imatinib in CML is most commonly associated with selection for a limited number of BCR-ABL kinase domain mutations that impair the ability of imatinib to effectively bind to BCR-ABL Molecular understanding of imatinib resistance mechanisms has led to the development of effective “second generation” BCR-ABL kinase inhibitors, such as dasatinib and nilotinib, which have clinical activity against most, but not all, drug-resistant mutations. Analysis of the BCR-ABL kinase domain in patients who develop resistance to second-generation inhibitors has implicated further selection of drug-resistant BCR-ABL kinase domain mutants in nearly all cases reported to date. Encouragingly, the number of resistant mutations capable of conferring clinical resistance to the most clinically-advanced second-generation agents, dasatinib (approved by the US FDA and EMEA) and nilotinib (approved in Mexico and Switzerland), appears to be restricted to a relatively small number of amino acid substitutions. As clinical experience with dasatinib and nilotinib grows, an understanding of the relative sensitivities of dasatinib- and nilotinib-resistant BCR-ABL mutants to other kinase inhibitors, both approved and investigational, is critical to optimize clinical outcomes in patients with resistance to dasatinib or nilotinib. At the present time, kinase inhibitor therapy options for patients with resistance to one of these agents include the investigational options bosutinib and MK-0457 (VX-680), as well as dasatinib and nilotinib (for patients not yet exposed to one of these agents) and re-exposure imatinib. It is likely that the success of therapeutic intervention in these cases can be predicted based upon the preclinical sensitivity of the mutation(s) involved with the agent chosen. We have therefore conducted a thorough biochemical and biological cross-analysis of the activities of each of these clinically-useful kinase inhibitors against mutations that confer clinical resistance to dasatinib or nilotinib. These studies provide clinicians with a useful reference for choosing an appropriate kinase inhibitor based upon the identity of the resistant BCR-ABL kinase domain mutation(s) detected at the time of relapse when faced with a patient who has lost response to dasatinib or nilotinib. It is hoped that the application of such “personalized medicine” strategies to the clinical management of CML cases will further improve outcomes in patients treated with kinase inhibitor therapy.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1671-1671
Author(s):  
Jacqueline Maier ◽  
Karoline Schubert ◽  
Michael Cross ◽  
Sabine Leiblein ◽  
Kathrin Wildenberger ◽  
...  

Abstract Abstract 1671 The presence of BCR-ABL kinase domain mutations below the detection limit of conventional screening techniques (low level mutations, LLM) predicts outcome of subsequent therapy in patients with imatinib resistance (Parker et. al JCO 2011 and Blood 2012). We have further evaluated LLM in the context of the ENEST1st trial, which addresses the frequency of complete molecular responses after 18 months on nilotinib 300mg BID (NI) in newly diagnosed patients with chronic myeloid leukemia (CML) in chronic phase (CP). Here, we have investigated the incidence of detectable LLM in the CD34+ progenitor cell compartment in comparison to total white cells (TWBC). Sixty nine ENEST1st study patients with CP CML provided 10ml of peripheral blood or 2ml bone marrow after written informed consent. CD34+ selection was carried out by MACS® (Miltenyi Biotec) and the CD34+ purity was subsequently determined by fluorescent activated cell sorting (FACS). The results were compared to those derived from stored TWBC from 23 of the same patients and a further 16 patients at diagnosis. Aliquots of 105 CD34+ or at least 106 TWBC were used for RNA extraction, cDNA synthesis and BCR-ABL amplification followed by Ligation PCR (L-PCR) for mutations T315I, Y253H, E255K/V, and F359V. This method has previously been shown to achieve a dynamic detection range of 100% to <0.1% mutant allele (3–3.5 log). No patients showed BCR-ABL kinase domain mutations detected by Sanger sequencing spanning ABL exons 4–9. Forty five of 69 patients (65%) with 105 CD34+ cells and a documented CD34+ purity of >50% were available for BCR-ABL amplification. Amplification was successful from 36 (52%) of these CD34+ samples and from 38 of the 39 (97%) TWBC samples. A total of 180 L-PCR assays of CD34+ cells identified 29 (16%) mutations (T315Ix12, Y253Hx7, E255Kx8/Vx1 and F359Vx1) in CD34+ cells from 21/36 patients (58%). In comparison, 190 assays of TWBC identified 10 (5%) mutations (T315Ix3, Y253Hx6, E255Vx1, p=0.0005) in 8/38 patients (21%, p=0.001 Fishers exact test). Significantly more T315I (33%) and E255K (22%) mutations were observed in CD34+ cells than in TWBC (8%, p=0.007 and 0% p= 0.003 respectively). The quantitative levels of all mutant alleles were median 0.135 (range 0.06–0.535) and 0.1 (range 0.04-0, 25) BCR-ABLmutant/ BCR-ABLunmutated for mutations in CD34+ cells and TWBC, respectively and were not significantly different. Where both CD34+ and TWBC were available from the same patient (n=23), 11 patients showed a total of 18 mutations in the CD34+ fraction but only one of these mutations was confirmed in TWBC. One additional mutation was detectable in the TWBC. The remaining 12 patients with no detectable mutation in the CD34+ fraction showed 3 mutations (2x Y253H, T315I) in 2 patients in TWBC only. In conclusion, LLM with either no (T315I) or intermediate (Y253H, E255K/V, F359V) sensitivity to nilotinib are detectable in CP CML patients at a frequency of 21% in the TWBC but with a significantly higher frequency of 58% in the enriched CD34+ progenitor cell compartment. Longterm patient follow up on the ENEST1st and ENESTobserve studies will allow analysis of the relationship between LLM and clinical outcomes on nilotinib. Disclosures: Hochhaus: Novartis, BMS, MSD, Ariad, Pfizer: Consultancy Other, Honoraria, Research Funding. Frank:Novartis: Employment. Lange:Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2004 ◽  
Vol 104 (8) ◽  
pp. 2532-2539 ◽  
Author(s):  
Thomas O'Hare ◽  
Roy Pollock ◽  
Eric P. Stoffregen ◽  
Jeffrey A. Keats ◽  
Omar M. Abdullah ◽  
...  

Abstract The deregulated, oncogenic tyrosine kinase Bcr-Abl causes chronic myeloid leukemia (CML). Imatinib mesylate (Gleevec, STI571), a Bcr-Abl kinase inhibitor, selectively inhibits proliferation and promotes apoptosis of CML cells. Despite the success of imatinib mesylate in the treatment of CML, resistance is observed, particularly in advanced disease. The most common imatinib mesylate resistance mechanism involves Bcr-Abl kinase domain mutations that impart varying degrees of drug insensitivity. AP23464, a potent adenosine 5′-triphosphate (ATP)–based inhibitor of Src and Abl kinases, displays antiproliferative activity against a human CML cell line and Bcr-Abl–transduced Ba/F3 cells (IC50 = 14 nM; imatinib mesylate IC50 = 350 nM). AP23464 ablates Bcr-Abl tyrosine phosphorylation, blocks cell cycle progression, and promotes apoptosis of Bcr-Abl–expressing cells. Biochemical assays with purified glutathione S transferase (GST)–Abl kinase domain confirmed that AP23464 directly inhibits Abl activity. Importantly, the low nanomolar cellular and biochemical inhibitory properties of AP23464 extend to frequently observed imatinib mesylate–resistant Bcr-Abl mutants, including nucleotide binding P-loop mutants Q252H, Y253F, E255K, C-terminal loop mutant M351T, and activation loop mutant H396P. AP23464 was ineffective against mutant T315I, an imatinib mesylate contact residue. The potency of AP23464 against imatinib mesylate–refractory Bcr-Abl and its distinct binding mode relative to imatinib mesylate warrant further investigation of AP23464 for the treatment of CML.


Sign in / Sign up

Export Citation Format

Share Document