The monovalent cation leak in overhydrated stomatocytic red blood cells results from amino acid substitutions in the Rh-associated glycoprotein

Blood ◽  
2009 ◽  
Vol 113 (6) ◽  
pp. 1350-1357 ◽  
Author(s):  
Lesley J. Bruce ◽  
Hélène Guizouarn ◽  
Nicholas M. Burton ◽  
Nicole Gabillat ◽  
Joyce Poole ◽  
...  

Abstract Overhydrated hereditary stomatocytosis (OHSt) is a rare dominantly inherited hemolytic anemia characterized by a profuse membrane leak to monovalent cations. Here, we show that OHSt red cell membranes contain slightly reduced amounts of Rh-associated glycoprotein (RhAG), a putative gas channel protein. DNA analysis revealed that the OHSt patients have 1 of 2 heterozygous mutations (t182g, t194c) in RHAG that lead to substitutions of 2 highly conserved amino acids (Ile61Arg, Phe65Ser). Unexpectedly, expression of wild-type RhAG in Xenopus laevis oocytes induced a monovalent cation leak; expression of the mutant RhAG proteins induced a leak about 6 times greater than that in wild type. RhAG belongs to the ammonium transporter family of proteins that form pore-like structures. We have modeled RhAG on the homologous Nitrosomonas europaea Rh50 protein and shown that these mutations are likely to lead to an opening of the pore. Although the function of RhAG remains controversial, this first report of functional RhAG mutations supports a role for RhAG as a cation pore.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2040-2040
Author(s):  
Connie M Westhoff ◽  
Seth Alper

Abstract Abstract 2040 The erythroid Rh family of proteins includes RhCE and RhD which carry the common Rh antigens, and the related Rh-associated glycoprotein, RhAG. RhAG is required for trafficking of the blood group proteins to the membrane and forms the core of a macro-complex in the membrane which includes glycophorin B, Band 3, CD47, and LW. The Rh proteins are structurally and functionally related to the Amt superfamily of NH3/NH4+ transport proteins, and RhAG and its nonerythroid paralogs, RhCG and RhBG, have been shown to mediate NH3/NH4+ transport. RhCG is responsible for part of renal collecting duct epithelial cell NH3/NH4+ secretion, and Rhcg-/- mice exhibit incomplete distal renal tubular acidosis due to impaired urinary NH4+ excretion. The Rhag-/- mouse is grossly normal, and the significance of RhAG-mediated NH3/NH4+ transport in human erythrocytes remains unclear. Over-hydrated hereditary stomatocytosis (OHSt) is a rare dominant disorder characterized by moderate hemolytic anemia, increased mean red cell volumes, stomatocytes and echinocytes, and increased red cell permeability to the monovalent cations, Na+ and K+. Six of the seven OHSt kindred studied by Bruce et al. (Blood. 2009;113:1350) displayed a heterozygous Phe65Ser mutation in RhAG. Expression studies of the mutant 65Ser-RhAG in Xenopus oocytes induced a monovalent cation flux compatible with the cation leak seen in RBCs. The increased Na+ and decreased K+ contents of mutant RhAG-expressing oocytes suggested that F65S is a gain-of-function mutation that opens a cation leak, likely within the RhAG polypeptide. In this study the ammonia transport properties of the OHSt mutant 65Ser-RhAG were investigated. Xenopus oocytes were injected with cRNA encoding wild-type RhAG, the OHSt mutant 65Ser-RhAG, and 65Val-RhAG, an engineered mutation with a smaller hydrophobic side chain at position 65. Wild-type and mutant RhAG polypeptides were well-expressed in the oocyte membrane as measured by quantitative immunoblotting. Uptake of the NH3/NH4+ substrate analog 14C-methylammonium (MA), was assayed in oocytes previously injected with water (control) or with cRNA. Expression of wild-type RhAG mediated MA uptake at rates 6-fold greater than that of water-injected controls. Uptake of MA by oocytes expressing 65Val-RhAG was equivalent to that of wild type RhAG. However, MA uptake by oocytes expressing OHSt mutant 65Ser-RhAG was greatly reduced to less than 20% that of oocytes expressing wild-type RHAG or 65Val-RhAG, and was only 1.5-fold greater than that of water-injected control oocytes. Co-expression with other, individual Rh complex members glycophorin B, RhD, RhCE, or Band 3 did not alter MA-mediated uptake by RhAG-expressing oocytes. Importantly, this study reveals that the RhAG mutation Phe65Ser found in patients with type 1 over-hydrated stomatocytosis is a loss of function mutation. Further study is required to define the relationship between loss of NH3/NH4+ transport and erythrocyte Na+ and K+ cation content. Disclosures: Westhoff: Immucor: Scientific Advisor.


2019 ◽  
Vol 317 (2) ◽  
pp. C287-C302 ◽  
Author(s):  
Alicia Rivera ◽  
David H. Vandorpe ◽  
Boris E. Shmukler ◽  
Immacolata Andolfo ◽  
Achille Iolascon ◽  
...  

Hereditary xerocytosis (HX) is caused by missense mutations in either the mechanosensitive cation channel PIEZO1 or the Ca2+-activated K+channel KCNN4. All HX-associated KCNN4 mutants studied to date have revealed increased current magnitude and red cell dehydration. Baseline KCNN4 activity was increased in HX red cells heterozygous for KCNN4 mutant V282M. However, HX red cells maximally stimulated by Ca2+ionophore A23187 or by PMCA Ca2+-ATPase inhibitor orthovanadate displayed paradoxically reduced KCNN4 activity. This reduced Ca2+-stimulated mutant KCNN4 activity in HX red cells was associated with unchanged sensitivity to KCNN4 inhibitor senicapoc and KCNN4 activator Ca2+, with slightly elevated Ca2+uptake and reduced PMCA activity, and with decreased KCNN4 activation by calpain inhibitor PD150606. The altered intracellular monovalent cation content of HX red cells prompted experimental nystatin manipulation of red cell Na and K contents. Nystatin-mediated reduction of intracellular K+with corresponding increase in intracellular Na+in wild-type cells to mimic conditions of HX greatly suppressed vanadate-stimulated and A23187 -stimulated KCNN4 activity in those wild-type cells. However, conferral of wild-type cation contents on HX red cells failed to restore wild-type-stimulated KCNN4 activity to those HX cells. The phenotype of reduced, maximally stimulated KCNN4 activity was shared by HX erythrocytes expressing heterozygous PIEZO1 mutants R2488Q and V598M, but not by HX erythrocytes expressing heterozygous KCNN4 mutant R352H or PIEZO1 mutant R2456H. Our data suggest that chronic KCNN4-driven red cell dehydration and intracellular cation imbalance can lead to reduced KCNN4 activity in HX and wild-type red cells.


Blood ◽  
1967 ◽  
Vol 30 (6) ◽  
pp. 785-791 ◽  
Author(s):  
RONALD S. WEINSTEIN ◽  
ROGER A. WILLIAMS

Abstract Electron microscopic studies on dried isolated red cell ghosts have been reported to show lesions associated with cell membranes in paroxysmal nocturnal hemoglobinuria (PNH). In this study, carbon-platinum replicas of membranes of freeze-cleaved, partially hydrated PNH red cells and isolated PNH cell ghosts failed to confirm the existence of these abnormalities. This suggests that the previously described lesions are the products of drying artifacts, although they may reflect hidden structural differences between PNH and normal red cell membranes.


1985 ◽  
Vol 85 (1) ◽  
pp. 123-136 ◽  
Author(s):  
J H Kaplan ◽  
L J Kenney

Phosphorylation of red cell membranes at ambient temperatures with micromolar [32P]ATP in the presence of Na ions produced phosphoenzyme that was dephosphorylated rapidly upon the addition of ADP or K ions. However, as first observed by Blostein (1968, J. Biol. Chem., 243:1957), the phosphoenzyme formed at 0 degrees C under otherwise identical conditions was insensitive to the addition of K ions but was dephosphorylated rapidly by ADP. This suggested that the conformational transition from ADP-sensitive, K-insensitive Na pump phosphoenzyme (E1 approximately P) to K-sensitive, ADP-insensitive phosphoenzyme (E2P) is blocked at 0 degrees C. Since the ATP:ADP exchange reaction is a partial reaction of the overall enzyme cycle dependent upon the steady state level of E1 approximately P that is regulated by [Na], we examined the effects of temperature on the curve relating [Na] to ouabain-sensitive ATP:ADP exchange. The characteristic triphasic curve seen at higher temperatures when [Na] was between 0.5 and 100 mM was not obtained at 0 degrees C. Simple saturation was observed instead with a K0.5 for Na of approximately 1 mM. The effect of increasing temperature on the ATP:ADP exchange at fixed (150 mM) Na was compared with the effect of increasing temperature on (Na + K)-ATPase activity of the same membrane preparation. It was observed that (a) at 0 degrees C, there was significant ouabain-sensitive ATP:ADP exchange activity, (b) at 0 degrees C, ouabain-sensitive (Na + K)-ATPase activity was virtually absent, and (c) in the temperature range 5-37 degrees C, there was an approximately 300-fold increase in (Na + K)-ATPase activity with only a 9-fold increase in the ATP:ADP exchange. These observations are in keeping with the suggestion that the E1 approximately P----E2P transition of the Na pump in human red cell membranes is blocked at 0 degrees C. Previous work has shown that the inhibitory effect of Na ions and the low-affinity stimulation by Na of the rate of ATP:ADP exchange occur at the extracellular surface of the Na pump. The absence of both of these effects at 0 degrees C, where E1 approximately P is maximal, supports the idea that external Na acts through sites on the E2P form of the phosphoenzyme.


1970 ◽  
Vol 131 (4) ◽  
pp. 643-657 ◽  
Author(s):  
P. J. Lachmann ◽  
R. A. Thompson

It has been shown that the "activated reactor" that is produced in certain human sera by complement activation is a stable complex of the fifth and sixth component of complement (C56). On interaction with C7, the indicator factor, a complex C567 is formed which for a short time (half-life less than 1 min) has an activated binding site and can attach itself to normal red cell membranes, conferring on them the hemolytic properties of the "heat stable" complement intermediate EC 1 ∼ 7, the capacity to be lysed by C8 and C9. These cells have neither antibody nor the complement components up to C3 bound on them. The binding site—activated C567c—can similarly bind to other hydrophobic surfaces, including agarose gel where it forms a "stainable line". If the complex is not bound to a surface, the binding site decays and the resulting complex will no longer give rise to lysis. However it will still inactivate C8 and C9 in solution. The sera that can generate activated reactor apparently do so because they have an excess of C5 and C6, compared to their content of C7. The phenomenon of reactive lysis thus represents complement-mediated lysis of unsensitized cells initiated at the C5 stage by a stable complex (C56) which was generated by complement activation at a distance. The immunochemistry of the phenomenon is described and some of its implications discussed.


1987 ◽  
Vol 22 (3) ◽  
pp. 369-369
Author(s):  
R Simsolo ◽  
M Gimenez ◽  
B Grunfold ◽  
A Furci ◽  
L Da Graccn ◽  
...  

1978 ◽  
Vol 8 (3) ◽  
pp. 325-335 ◽  
Author(s):  
Ronald S. Weinstein ◽  
Jena K. Khodadad ◽  
Theodore L. Steck

1991 ◽  
Vol 11 (1) ◽  
pp. 47-54
Author(s):  
H Chan ◽  
S Hartung ◽  
M Breindl

We have studied the role of DNA methylation in repression of the murine alpha 1 type I collagen (COL1A1) gene in Mov13 fibroblasts. In Mov13 mice, a retroviral provirus has inserted into the first intron of the COL1A1 gene and blocks its expression at the level of transcriptional initiation. We found that regulatory sequences in the COL1A1 promoter region that are involved in the tissue-specific regulation of the gene are unmethylated in collagen-expressing wild-type fibroblasts and methylated in Mov13 fibroblasts, confirming and extending earlier observations. To directly assess the role of DNA methylation in the repression of COL1A1 gene transcription, we treated Mov13 fibroblasts with the demethylating agent 5-azacytidine. This treatment resulted in a demethylation of the COL1A1 regulatory sequences but failed to activate transcription of the COL1A1 gene. Moreover, the 5-azacytidine treatment induced a transcription-competent chromatin structure in the retroviral sequences but not in the COL1A1 promoter. In DNA transfection and microinjection experiments, we found that the provirus interfered with transcriptional activity of the COL1A1 promoter in Mov13 fibroblasts but not in Xenopus laevis oocytes. In contrast, the wild-type COL1A1 promoter was transcriptionally active in Mov13 fibroblasts. These experiments showed that the COL1A1 promoter is potentially transcriptionally active in the presence of proviral sequences and that Mov13 fibroblasts contain the trans-acting factors required for efficient COL1A1 gene expression. Our results indicate that the provirus insertion in Mov13 can inactivate COL1A1 gene expression at several levels. It prevents the developmentally regulated establishment of a transcription-competent methylation pattern and chromatin structure of the COL1A1 domain and, in the absence of DNA methylation, appears to suppress the COL1A1 promoter in a cell-specific manner, presumably by assuming a dominant chromatin structure that may be incompatible with transcriptional activity of flanking cellular sequences.


Sign in / Sign up

Export Citation Format

Share Document