scholarly journals BIO5192, a small molecule inhibitor of VLA-4, mobilizes hematopoietic stem and progenitor cells

Blood ◽  
2009 ◽  
Vol 114 (7) ◽  
pp. 1340-1343 ◽  
Author(s):  
Pablo Ramirez ◽  
Michael P. Rettig ◽  
Geoffrey L. Uy ◽  
Elena Deych ◽  
Matthew S. Holt ◽  
...  

Abstract Here we show that interruption of the VCAM-1/VLA-4 axis with a small molecule inhibitor of VLA-4, BIO5192, results in a 30-fold increase in mobilization of murine hematopoietic stem and progenitors (HSPCs) over basal levels. An additive affect on HSPC mobilization (3-fold) was observed when plerixafor (AMD3100), a small molecule inhibitor of the CXCR-4/SDF-1 axis, was combined with BIO5192. Furthermore, the combination of granulocyte colony-stimulating factor (G-CSF), BIO5192, and plerixafor enhanced mobilization by 17-fold compared with G-CSF alone. HSPCs mobilized by BIO5192 or the combination of BIO5192 and plerixafor mobilized long-term repopulating cells, which successfully engraft and expand in a multilineage fashion in secondary transplantation recipients. Splenectomy resulted in a dramatic enhancement of G-CSF–induced mobilization while decreasing both plerixafor- and BIO5192-induced mobilization of HSPCs. These data provide evidence for the utility of small molecule inhibitors of VLA-4 either alone or in combination with G-CSF or AMD3100 for mobilization of hematopoietic stem and progenitor cells.

Blood ◽  
1996 ◽  
Vol 88 (11) ◽  
pp. 4139-4148 ◽  
Author(s):  
KJ Grzegorzewski ◽  
KL Komschlies ◽  
JL Franco ◽  
FW Ruscetti ◽  
JR Keller ◽  
...  

Abstract Administration of recombinant human interleukin-7 (rhIL-7) to mice increases the exportation of myeloid progenitors (colony-forming unit [CFU]-c and CFU-granulocyte erythroid megakaryocyte macrophage [CFU-GEMM]) from the bone marrow (BM) to peripheral organs, including blood, and also increases the number of primitive progenitor and stem cells in the peripheral blood (PB). We now report that combined treatment of mice with rhIL-7 and recombinant human granulocyte-colony stimulating factor (rhG-CSF) stimulates a twofold to 10-fold increase in the total number of PB CFU-c, and a twofold to fivefold increase in the total number of PB CFU-spleen at day 8 (CFU-S8) over the increase stimulated by rhIL-7 or rhG-CSF alone. In addition, the quality of mobilized cells with trilineage, long-term marrow-repopulating activity is maintained or increased in mice treated with rhIL-7 and rhG-CSF compared with rhIL-7 or rhG-CSF alone. These differences in mobilizing efficiency suggest qualitative differences in the mechanisms by which rhIL-7 and rhG-CSF mobilize progenitor cells, in fact, the functional status of progenitor cells mobilized by rhIL-7 differs from that of cells mobilized by rhG-CSF in that the incidence of actively cycling (S-phase) progenitors obtained from the PB is about 20-fold higher for rhIL-7-treated mice than for mice treated with rhG-CSF. These results suggest the use of rhIL-7-mobilized progenitor/stem cells for gene-modification and tracking studies, and highlight different functions and rates of repopulation after reconstitution with PB leukocytes obtained from mice treated with rhIL-7 versus rhG-CSF.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 615-615 ◽  
Author(s):  
Pablo A. Ramirez ◽  
Michael Rettig ◽  
Matthew Holt ◽  
Julie Ritchey ◽  
John F. DiPersio

Abstract Background: Hematopoietic stem cells (HSC) interact with stromal cells, osteoblasts and matrix proteins in the hematopoietic niche. This interaction plays an important role in HSC trafficking, proliferation and differentiation. Significant data support the roles of both the SDF-1/CXCR4 and the VCAM1-VLA-4 axes in stem cell homing and mobilization. Two recent reports have shown that Natalizumab, an anti-VLA-4 monoclonal antibody used in the treatment of Multiple Sclerosis, induces mobilization of CD34+ HSC over several days. In the present study we tested the specificity and efficacy of a novel VLA-4 small molecule inhibitor, AMD15057, in murine preclinical studies of normal HSC mobilization. Methods: Fibronectin adhesion assays were performed with Jurkat cells to test the specificity of AMD15057. Ninety-six well plates were coated with fibronectin or BSA and the inhibition of Jurkat cell (VLA-4 +) adhesion by AMD15057 was determined in the presence or absence of PMA activation. To evaluate the mobilization of HSC progenitors, 8 week old 129/B6 F1 mice (n=6 per group, 3 experiments) were left untreated (unmobilized) or treated with AMD15057 (0.1,1,3 mg/kg iv or 3,5,7 mg/ kg sc), AMD3100 (1,3 mg/kg iv or 1,3,5 mg/kg sc), G-CSF (250 mg/kg/d × 5 d) or combinations. Total WBC and CFU-GM were determined at different time points for each mobilization regimen. For long-term competitive repopulation cell assays (LTRC), PBMCs from 3 Ly5.2+ unmobilized or mobilized mice (700uL PB each) were pooled, mixed with 5×105 Ly5.1+ BM mononuclear cells (MNC) (3:1 ratio) and injected into lethally irradiated Ly5.1+/Ly5.2+ compound heterozygote recipient mice. Chimerism was evaluated monthly for 6 months by flow cytometry. Secondary transplants to evaluate long term repopulation activity was performed by injecting lethally irradiated heterozygotes with 106 BM pooled MNC from the primary recipients. Results: The adhesion of untreated and PMA treated Jurkat cells to fibronectin coated wells was decreased by 62% (3.2 SD) and 69% (3.4 SD) (p<0.001) respectively, upon the addition of 1ug/ml AMD15057 compared to vehicle control. In vivo, a single iv or sc injection of AMD15057 resulted in maximum mobilization of CFU-GM within 0.5–0.75 hr. This effect was dose dependent for both sc and iv administrations. Maximum and comparable peak mobilization (13-fold iv; 9-fold sc, pNS) and kinetics of murine HSC mobilization was seen in mice receiving 1mg/kg iv and 5mg/kg sc AMD15057. In contrast, iv dosing of a small molecule inhibitor of CXCR4, AMD3100 (3mg/kg optimal dose) resulted in more rapid peak mobilization (10-fold) in <1hr compared to 3hr peak mobilization (20-fold) after sc dosing (5mg/kg optimal dose). Combination of AMD15057 (1mg/kg iv) with AMD3100 (5mg/kg sc) resulted in synergistic mobilization of CFU-GM (60-fold) when compared to each agent alone (p<0.01). In addition, when AMD3100 and AMD15057 were administered to mice after 5 days of mobilization with G-CSF (17-fold), a dramatic, rapid and reversible mobilization of CFU-GM was observed (200-fold) which was significantly higher than G-CSF+AMD3100 (90-fold) and G-CSF+AMD15057 (90-fold). LTRC assays confirmed that both AMD3100 and AMD15057 induced the rapid mobilization of short and long term repopulating cells and that this effect was synergistic when both agents were co-administered and exceed the LTRC seen after G-CSF mobilization. Secondary transplants confirmed the long term repopulating capacity of HSC mobilized with AMD15057. Conclusions: The VCAM1/VLA-4 axis is involved in HSC trafficking. AMD15057 is effective in blocking the interaction between VLA4 and its ligand fibronectin. AMD15057 induces rapid and reversible mobilization of normal progenitors and HSC which have the long term repopulating capacity. Finally, a dramatic synergistic effect was observed when AMD15057 was combined with AMD3100, G-CSF and the combination. The results provide a plausible foundation for replacing G-CSF with small molecule inhibitors of CXCR4 and VLA-4 for rapid and reversible HSC mobilization in humans.


Blood ◽  
1996 ◽  
Vol 88 (11) ◽  
pp. 4139-4148 ◽  
Author(s):  
KJ Grzegorzewski ◽  
KL Komschlies ◽  
JL Franco ◽  
FW Ruscetti ◽  
JR Keller ◽  
...  

Administration of recombinant human interleukin-7 (rhIL-7) to mice increases the exportation of myeloid progenitors (colony-forming unit [CFU]-c and CFU-granulocyte erythroid megakaryocyte macrophage [CFU-GEMM]) from the bone marrow (BM) to peripheral organs, including blood, and also increases the number of primitive progenitor and stem cells in the peripheral blood (PB). We now report that combined treatment of mice with rhIL-7 and recombinant human granulocyte-colony stimulating factor (rhG-CSF) stimulates a twofold to 10-fold increase in the total number of PB CFU-c, and a twofold to fivefold increase in the total number of PB CFU-spleen at day 8 (CFU-S8) over the increase stimulated by rhIL-7 or rhG-CSF alone. In addition, the quality of mobilized cells with trilineage, long-term marrow-repopulating activity is maintained or increased in mice treated with rhIL-7 and rhG-CSF compared with rhIL-7 or rhG-CSF alone. These differences in mobilizing efficiency suggest qualitative differences in the mechanisms by which rhIL-7 and rhG-CSF mobilize progenitor cells, in fact, the functional status of progenitor cells mobilized by rhIL-7 differs from that of cells mobilized by rhG-CSF in that the incidence of actively cycling (S-phase) progenitors obtained from the PB is about 20-fold higher for rhIL-7-treated mice than for mice treated with rhG-CSF. These results suggest the use of rhIL-7-mobilized progenitor/stem cells for gene-modification and tracking studies, and highlight different functions and rates of repopulation after reconstitution with PB leukocytes obtained from mice treated with rhIL-7 versus rhG-CSF.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2995-2995 ◽  
Author(s):  
Marina Scheller ◽  
Frank Schwoebel ◽  
Doerte Vossmeyer ◽  
Achim Leutz

Abstract Abstract 2995 Mobilization of hematopoietic stem cells (HSCs) and progenitor cells (HPCs) is important in many hematological therapies. However, up to 30% of the patients respond poorly to standard granulocyte colony-stimulating factor (G-CSF) treatment, highlighting the need for more effective mobilizing strategies. The CXCR4/stromalcell-derived factor 1 (SDF-1) axis plays a crucial role in the interaction between HSCs and the marrow niche and is involved in HSC mobilization. NOX-A12 is a structured mirror-image RNA oligonucleotide, a so-called Spiegelmer®, that was identified to bind SDF-1 thereby inhibiting its activity with subnanomolar IC50. HSC/HPC mobilization by NOX-A12 was examined in the mouse. Single NOX-A12 administration induced reversible mobilization of HSC/HPC populations within a few hours. NOX-A12 synergized with G-CSF to strongly enhance HSC/HPC mobilization. In particular, the progenitor compartment mobilized by single NOX-A12 administration contained more differentiated short-term HSCs (ST-HSCs), and combined administration of NOX-A12 and G-CSF mobilized a significantly higher proportion of primitive and more potent murine long-term repopulating cells that successfully engrafted primary and secondary lethally-irradiated recipients. These results characterize NOX-A12 as a potent HSCs/HPCs mobilizing therapeutic in mammals and suggest its clinical potential. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2017 ◽  
Vol 129 (14) ◽  
pp. 1901-1912 ◽  
Author(s):  
Jeffrey M. Bernitz ◽  
Michael G. Daniel ◽  
Yesai S. Fstkchyan ◽  
Kateri Moore

Key Points G-CSF mobilizes dormant HSCs without proliferation. Transplantation defects of mobilized peripheral blood-derived hematopoietic stem and progenitor cells are divisional history independent.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2648-2648 ◽  
Author(s):  
Darja Karpova ◽  
Julie Ritchey ◽  
Matthew Holt ◽  
Darlene Monlish ◽  
Laura G. Schuettpelz ◽  
...  

Abstract During the past two decades peripheral blood stem cells have become the favored graft source for HSCT with 80 % of allogeneic and almost 100 % of autologous HSCT performed with mobilized blood. The critical role of the interaction between the chemokine receptor CXCR4 and its chief ligand CXCL12 for retention and migration of hematopoietic stem and progenitor cells (HSPC) has been well established. Interference with CXCR4/CXCL12 signalling iscurrentlybeing exploited as a strategy to mobilize HSPC indirectly with the most clinically relevant mobilizing agent to date, G-CSF as well as directly with the bicyclam CXCR4 antagonist Plerixafor (AMD3100).In this study, qualitative and quantitative effects of long-term pharmacologic inhibition of CXCR4/CXCL12 axis within the HSPC compartment were investigated in healthy C57BL/6 mice using the non-peptidic small molecule CXCR4 antagonists Plerixafor and ALT1188 along with the Protein-EpitopeMimeticsInhibitor POL5551. Up to 12-14 fold higher mobilization efficiency was achieved by applying the antagonists via two weeks of continuous infusion (up to 8-10x104 CFU-C and LSK/ml) as compared to bolus treatment (4-6x103 CFU-C and LSK/ml) or 5-day course of G-CSF (3-6x103 CFU-C/ml).Despite dramatic increase in numbers of circulating HSPC, the BM HSPC pool dis not decrease; in fact it expanded up to 2-4-fold compared to steady state reservoir (sham-operated control mice) as measured by immunophenotypical (LSK SLAM) and functional (e.g. serial competitive transplantation) properties of the cells. Thus, in contrast to genetically CXCR4 ablatedHSPC, the reversible long-term blockade of the receptor did not diminish the long-term repopulating capacity of HSPC. Cell cycle analysis showed a 2-3-fold increase in cycling activity of BM HSPC: only 10-20% of LSK and 30-40 % of LSK SLAM cells were found to be quiescent (in G0 phase of the cell cycle) after two weeks of CXCR4 antagonist infusion versus 50-60 % of LSK and 70 % of LSK SLAM found in G0 under homeostatic conditions. This increased proliferation was very similar to the one induced transiently at day 3 G-CSF treatmentand would conceivably explain the sustained mobilization without concomitant depletion of the BM HSPC pool. Profiling of differentially treated BM HSC (LSK SLAM) via microarray analysis did not reveal substantial effects of CXCR4 inhibitor infusion on the expression signature. Ofnote, major cytological changes typically associated with G-CSF induced mobilization, e.g. depletion of bone lining osteoblast lineage cells and macrophages, were not detected in continuous infusion of POL5551 exposed BM suggesting limitedeffects within the BM niche compartment. Moreover analysis of the BM HSPC after different washout periods at the end of continuous infusion treatment revealed a rapid (within 1-3 days after discontinuation of infusion) reestablishment of steady state HSPC numbers in the BM.Our data suggest that prolonged pharmacologic blockade of the CXCR4/CXCL12 axis using multiple small molecule inhibitorsrepresents an approach thatreleasesHSPCwith efficiency superiorto any other knownmobilization strategybut also may serve as an effective method induce cell cycling and thus expand BM HSPCs. Figure Competitive transplantation of POL5551 treated andcontrol BM (n=5 recipients per group, mean±SEM) Figure. Competitive transplantation of POL5551 treated andcontrol BM (n=5 recipients per group, mean±SEM) Disclosures Levesque: GlycoMimetics: Equity Ownership.


Sign in / Sign up

Export Citation Format

Share Document