Fibronectin maintains survival of mouse natural killer (NK) cells via CD11b/Src/β-catenin pathway

Blood ◽  
2009 ◽  
Vol 114 (19) ◽  
pp. 4081-4088 ◽  
Author(s):  
Ting Zhang ◽  
Shuxun Liu ◽  
Pengyuan Yang ◽  
Chaofeng Han ◽  
Jianli Wang ◽  
...  

Abstract Tissue microenvironment and stroma-derived extracellular matrix (ECM) molecules play important roles in the survival and differentiation of cells. Mouse natural killer (NK) cells usually die within 24 hours once isolated ex vivo. Exogenous cytokines such as interleukin-12 (IL-12) and IL-15 are required to maintain the survival and activity of mouse NK cells cultured in vitro. Whether and how ECM molecules such as fibronectin can support the survival of NK cells remain unknown. We demonstrate that fibronectin, just like IL-15, can maintain survival of mouse NK cells in vitro. Furthermore, we show that fibronectin binds to the CD11b on NK cells, and then CD11b recruits and activates Src. Src can directly interact with β-catenin and trigger nuclear translocation of β-catenin. The activation of β-catenin promotes extracellular signal-related kinase (ERK) phosphorylation, resulting in the increased expression of antiapoptotic protein B-cell leukemia 2 (Bcl-2), which may contribute to the maintenance of NK-cell survival. Consistently, fibronectin cannot maintain the survival of CD11b− NK cells and β-catenin–deficient NK cells in vitro, and the number of NK cells is dramatically decreased in the β-catenin–deficient mice. Therefore, fibronectin can maintain survival of mouse NK cells by activating ERK and up-regulating Bcl-2 expression via CD11b/Src/β-catenin pathway.

Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2417 ◽  
Author(s):  
Tram N. Dao ◽  
Sagar Utturkar ◽  
Nadia Atallah Lanman ◽  
Sandro Matosevic

Among natural killer (NK) cell receptors, the T-cell immunoglobulin and mucin-containing domain (TIM-3) has been associated with both inhibitory and activating functions, depending on context and activation pathway. Ex vivo and in vitro, expression of TIM-3 is inducible and depends on activation stimulus. Here, we report that TIM-3 expression can be downregulated on NK cells under specific conditions. When NK cells are exposed to cancer targets, they synergize with stimulation conditions to induce a substantial decrease in TIM-3 expression on their surface. We found that such downregulation occurs following prior NK activation. Downregulated TIM-3 expression correlated to lower cytotoxicity and lower interferon gamma (IFN-γ) expression, fueling the notion that TIM-3 might function as a benchmark for human NK cell dysfunction.


Blood ◽  
1999 ◽  
Vol 93 (5) ◽  
pp. 1612-1621 ◽  
Author(s):  
Lei Yao ◽  
Cecilia Sgadari ◽  
Keizo Furuke ◽  
Eda T. Bloom ◽  
Julie Teruya-Feldstein ◽  
...  

Abstract Interleukin-12 (IL-12) inhibits angiogenesis in vivo by inducing interferon-γ (IFN-γ) and other downstream mediators. Here, we report that neutralization of natural killer (NK) cell function with antibodies to either asialo GM1 or NK 1.1 reversed IL-12 inhibition of basic fibroblast growth factor (bFGF)-induced angiogenesis in athymic mice. By immunohistochemistry, those sites where bFGF-induced neovascularization was inhibited by IL-12 displayed accumulation of NK cells and the presence of IP-10–positive cells. Based on expression of the cytolytic mediators perforin and granzyme B, the NK cells were locally activated. Experimental Burkitt lymphomas treated locally with IL-12 displayed tumor tissue necrosis, vascular damage, and NK-cell infiltration surrounding small vessels. After activation in vitro with IL-12, NK cells from nude mice became strongly cytotoxic for primary cultures of syngeneic aortic endothelial cells. Cytotoxicity was neutralized by antibodies to IFN-γ. These results document that NK cells are required mediators of angiogenesis inhibition by IL-12, and provide evidence that NK-cell cytotoxicity of endothelial cells is a potential mechanism by which IL-12 can suppress neovascularization.


Blood ◽  
2005 ◽  
Vol 106 (7) ◽  
pp. 2252-2258 ◽  
Author(s):  
Thierry Walzer ◽  
Marc Dalod ◽  
Scott H. Robbins ◽  
Laurence Zitvogel ◽  
Eric Vivier

AbstractSeveral recent publications have focused on the newly described interactions between natural-killer (NK) cells and dendritic cells (DCs). Activated NK cells induce DC maturation either directly or in synergy with suboptimal levels of microbial signals. Immature DCs appear susceptible to autologous NK-cell-mediated cytolysis while mature DCs are protected. NK-cell-induced DC activation is dependent on both tumor necrosis factor-α (TNF-α)/interferon-γ (IFN-γ) secretion and a cell-cell contact involving NKp30. In vitro, interleukin-12 (IL-12)/IL-18, IL-15, and IFN-α/β production by activated DCs enhance, in turn, NK-cell IFN-γ production, proliferation, and cytotoxic potential, respectively. In vivo, NK-cell/DC interactions may occur in lymphoid organs as well as in nonlymphoid tissues, and their consequences are multiple. By inducing DC activation, NK-cell activation induced by tumor cells can indirectly promote antitumoral T-cell responses. Reciprocally, DCs activated through Toll-like receptors (TLRs) induce potent NK-cell activation in antiviral responses. Thus, DCs and NK cells are equipped with complementary sets of receptors that allow the recognition of various pathogenic agents, emphasizing the role of NK-cell/DC crosstalk in the coordination of innate and adaptive immune responses.


Blood ◽  
2012 ◽  
Vol 119 (22) ◽  
pp. 5164-5172 ◽  
Author(s):  
Srinivas S. Somanchi ◽  
Anitha Somanchi ◽  
Laurence J. N. Cooper ◽  
Dean A. Lee

Natural killer (NK) cells have gained significant attention in adoptive immunotherapy for cancer. Consequently, novel methods of clinical-grade expansion of NK cells have emerged. Subsets of NK cells express a variety of chemokine receptors. However, to expand the scope of adoptively transferred NK cell homing to various malignancies, expression of corresponding chemokine receptors on NK cells is essential. Here, we have explored the use of trogocytosis as a tool to transiently express the chemokine receptor CCR7 on expanded human NK cells with the aim to enhance their homing to lymph nodes. We generated a K562-based “donor” cell line expressing CCR7, Clone9.CCR7, to transfer CCR7 onto NK cells via trogocytosis. CCR7 expression occurred in 80% of expanded NK cells within 1 hour after coculture with Clone9.CCR7. After removal of the donor cells from the coculture, the CCR7 expression on NK cells steadily declined to baseline levels by 72 hours. The acquired CCR7 receptors mediated in vitro migration of NK cells toward CCL19 and CCL21 and increased the lymph node homing by 144% in athymic nude mice. This is the first report on exploiting trogocytosis to rapidly and transiently modify lymphocytes, without direct genetic interven-tion, for adoptive transfer.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 341-341
Author(s):  
Lucila Kerbauy ◽  
Mecit Kaplan ◽  
Pinaki P Banerjee ◽  
Francesca Lorraine Wei Inng Lim ◽  
Ana Karen Nunes Cortes ◽  
...  

Abstract Chimeric antigen receptors to redirect T cell specificity against tumor antigens have shown remarkable clinical responses against CD19+ malignancies. However, the manufacture of an engineered autologous T cell product is expensive and cumbersome. Natural killer (NK) cells provide an alternative source of immune effectors for the treatment of cancer. NK cell cytolytic function can be directed towards specific targets by exploiting their ability to mediate antibody-dependent cellular cytotoxicity (ADCC) through the NK cell Fc receptor, CD16 (FcγRIIIa). AFM13 is a tetravalent bispecific antibody construct based on Affimed's ROCK™ platform. AFM13 is bispecific for CD30 and CD16A, designed for the treatment of CD30 expressing malignancies. It binds CD16A on the surface of NK cells, thus activating and recruiting them to CD30 expressing tumor cells and mediating subsequent tumor cell killing. Since autologous NK effector function is impaired in many patients with malignancies, we propose to overcome this by the use of allogeneic NK cells in combination with AFM13. Cord blood (CB) is a readily available ("off-the-shelf") source of allogeneic NK cells that can be expanded to large, highly functional therapeutic doses. The feasibility and safety of therapy with allogeneic ex vivo expanded CB-derived NK cells have been shown by our group and others. In this study, we hypothesized that we can redirect the specificity of NK cells against CD30+ malignancies by preloading ex vivo activated and expanded CB-derived NK cells with AFM13 prior to adoptive infusion. Briefly, mononuclear cells were isolated from fresh or frozen CB units by ficoll density gradient centrifugation. CD56+ NK cells were cultured with rhIL-12, rhIL-18 and rhIL-15 for 16 hrs, followed by ex vivo expansion with rhIL-2 and irradiated (100 Gy) K562-based feeder cells expressing membrane-bound IL-21 and CD137-ligand (2:1 feeder cell:NK ratio). After 14 days, NK cells were loaded with serial dilutions of AFM13 (0.1, 1, 10 and 100 mg/ml). After washing twice with PBS, we tested the effector function of AFM13-loaded NK-cells (AFM13-NK) compared to expanded CB-NK cells without AFM13 against Karpas-299 (CD30 positive) and Daudi (CD30 negative) lymphoma cell lines by 51Cr release and intracellular cytokine production assays. AFM13-NK cells killed Karpas-299 cells more effectively at all effector:target ratios tested than unloaded NK cells (Figure 1) and produced statistically more INFγ and CD107a (P=0.0034; P=0.0031 respectively, n=4). In contrast, AFM13-NK cells and unloaded NK cells exerted similar cytotoxicity against Daudi cells. Next, we established the optimal concentration of AFM13 for loading (determined to be 100 μg/ml) and the optimal incubation time to obtain maximal activity (1 h) in a series of in vitro experiments. We also confirmed that the activity of AFM13-NK cells against Karpas-299 cells remains stable for at least 72h post-wash (Figure 2). Additionally, we characterized the phenotype of AFM13-NK vs. unloaded NK cells by flow cytometry using monoclonal antibodies against 22 markers, including markers of activation, inhibitory receptors, exhaustion markers and transcription factors. Compared to unloaded NK cells, AFM13-NK cells expressed higher levels of CD25, CD69, TRAIL, NKp44, granzyme B and CD57, consistent with an activated phenotype. We next tested the in vivo anti-tumor efficacy of AFM13-NK cells in an immunodeficient mouse model of FFluc-Karpas-299. Briefly, six groups of NOD/SCID/IL2Rγc null mice (n=5 per group) were transplanted by tail-vein injection with 1 x 10e5 FFluc-transduced Karpas cells. Group 1 and 6 received tumor alone or tumor + AFM13 and served as a control. Groups 2-4 receive Karpas FFLuc with either expanded NK cells or AFM13-NK cells (NK cells loaded with AFM13) or expanded NK cells and AFM13 injected separately. Group 5 received AFM13-NK cells without tumor. Initial studies confirm the antitumor activity of AFM13-NK cells. In summary, we have developed a novel premixed product, comprised of expanded CB-NK cells loaded with AFM13 to 'redirect' their specificity against CD30+ malignancies. The encouraging in vitro and in vivo data observed in this study, provide a strong rationale for a clinical trial to test the strategy of an off-the-shelf adoptive immunotherapy with AFM13-loaded CB-NK cells in patients with relapsed/refractory CD30+ malignancies. Disclosures Champlin: Sanofi: Research Funding; Otsuka: Research Funding. Koch:Affimed GmbH: Employment. Treder:Affimed GmbH: Employment. Shpall:Affirmed GmbH: Research Funding. Rezvani:Affirmed GmbH: Research Funding.


Blood ◽  
1999 ◽  
Vol 93 (5) ◽  
pp. 1612-1621 ◽  
Author(s):  
Lei Yao ◽  
Cecilia Sgadari ◽  
Keizo Furuke ◽  
Eda T. Bloom ◽  
Julie Teruya-Feldstein ◽  
...  

Interleukin-12 (IL-12) inhibits angiogenesis in vivo by inducing interferon-γ (IFN-γ) and other downstream mediators. Here, we report that neutralization of natural killer (NK) cell function with antibodies to either asialo GM1 or NK 1.1 reversed IL-12 inhibition of basic fibroblast growth factor (bFGF)-induced angiogenesis in athymic mice. By immunohistochemistry, those sites where bFGF-induced neovascularization was inhibited by IL-12 displayed accumulation of NK cells and the presence of IP-10–positive cells. Based on expression of the cytolytic mediators perforin and granzyme B, the NK cells were locally activated. Experimental Burkitt lymphomas treated locally with IL-12 displayed tumor tissue necrosis, vascular damage, and NK-cell infiltration surrounding small vessels. After activation in vitro with IL-12, NK cells from nude mice became strongly cytotoxic for primary cultures of syngeneic aortic endothelial cells. Cytotoxicity was neutralized by antibodies to IFN-γ. These results document that NK cells are required mediators of angiogenesis inhibition by IL-12, and provide evidence that NK-cell cytotoxicity of endothelial cells is a potential mechanism by which IL-12 can suppress neovascularization.


1996 ◽  
Vol 184 (5) ◽  
pp. 1845-1856 ◽  
Author(s):  
I M Bennett ◽  
O Zatsepina ◽  
L Zamai ◽  
L Azzoni ◽  
T Mikheeva ◽  
...  

Human natural killer (NK) cell differentiation from immature lineage negative (Lin-) umbilical cord blood cells was examined in vitro. Cells expressing differentiation antigens of mature NK cells (CD56, CD16, CD2, CD8, NKR-P1A) were generated from Lin- cells cultured with interleukin (IL)-2 and a murine bone marrow stromal cell line expressing the human membrane-bound form of stem cell factor. Two subsets of NK cells were identified in these cultures: one expressed both NKR-P1A and CD56 and, in variable proportions, all other NK cell differentiation antigens; the second subset expressed only NKR-P1A and, unlike the former, was not cytotoxic. Neither subset expressed interferon (IFN)-gamma mRNA even after stimulation with phorbol di-ester and Ca2+ ionophore, but both expressed tumor necrosis factor alpha mRNA and the cytotoxic granule-associated proteins TIA-1, perforin, and serine esterase-1. After 10-d culture with IL-2, IL-12, and irradiated B lymphoblastoid cells, approximately 45% of the NKR-P1A+/ CD56- cells became CD56+, and the same cultures contained cells capable of cytotoxicity and of IFN-gamma production. These results indicate that NKR-P1A expression in the absence of other NK cell markers defines an intermediate, functionally immature stage of NK cell differentiation, and that effector functions develop in these cells, concomitantly with CD56 expression, in the presence of IL-12. These cells likely represent the counterpart of a CD3-/NKR-P1A+/ CD56-/CD16- cell subset that, as shown here, is present both in adult and neonatal circulating lymphocytes.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A151-A151
Author(s):  
Yeonhee Yun ◽  
Jiao Wang ◽  
Karen Pollok ◽  
Tony Sinn ◽  
Randy Brutkiewicz ◽  
...  

BackgroundGlioblastoma (GBM) is a deadly brain malignancy with a dismal prognosis. While immunotherapy holds great promise for GBM treatment, most have failed due to a suppressive tumor microenvironment (TME). Antigen heterogeneity and adenosine signaling are two immunosuppressive mechanisms in GBM. The CD73-adenosine axis plays a multifaceted role in GBM pathogenesis and drives the dysfunction of NK cells in GBM TME.1,3 Our NKG2D-chimeric antigen receptor (CAR)-natural killer (NK) cells have shown anti-tumor activity when combined with CD73 blockade in vivo.2 To further extend the potency of these cells against GBM and address antigen heterogeneity in GBM, we combined the local blockade of CD73 with multi-antigen-targeting engineered NK cells. In order to improve treatment assessment, PET/MR imaging was employed to enable detailed, non-invasive assessment of tumor progression. Imaging assessment of adoptively-transferred CAR- NK cells was also developed to determine the fate of NK cell delivery to the tumor site over time.MethodsWe generated multifunctional engineered NK (E-NK) cells that express an anti-CD73 scFv, which is cleavable by GBM-associated proteases, an NKG2D-CAR, as well as a GD2 CAR, which can actively target the GD2 antigen overexpressed on GBM (Figure 1A). For E-NK cell radiolabeling, zirconium-89 (89Zr, ½ life = 78 Hr) radiotracer was attached covalently to the E-NK cell surface via conjugation with DFO-Bz-NCS in a range of doses from 50–600 µCi.ResultsAn optimal balance between labeling efficiency and cell viability was attained at 120 µCi 89Zr resulting in 39% labeling efficiency and 46% cell viability over for 48 hours. After labeling, the NK cells maintained their in vitro killing activity against GBM cells (figure 1B). The 89Zr labeled E-NK cells were administered intravenously in mice containing intracranial GBM10 tumors at week 5 post-implant. PET imaging was performed at 1 and 2 days later and gamma imaging ex vivo at 4 days. Free 89Zr was visible diffusely throughout the body with low levels in the brain. The majority of 89Zr labeled E-NK cell groups localized to the lungs with detectable activity elsewhere in various organs (figure 1C and 1D).Abstract 138 Figure 1PET imaging and gamma counting of the engineered NK cellsFigure 1 (A) Multifunctional, responsive CAR constructs; (B) In vitro killing activity against GBM43 cells after co-incubation with 89Zr labeled NK cells at an E:T ratio of 10 for 4 h with LDH assay (N=3); (C) & (D) In vivo PET imaging and ex vivo gamma counting with 89Zr at week 5 in 10 mice during 4 days, GBM intracranial implantation to NSG male mouse, 89Zr, 89Zr + NK cell, or 89Zr + E NK cell (7 × 106 cells with 500 µCi) was administered through intravenous injection, Qimage was used for the PET/MRI co-registration and analysisConclusionsWe generated multifunctional E-NK cells which showed the improved killing of GBM cells using novel targeting approaches, including the blockade of CD73-mediated adenosinergic signaling. We also optimized E-NK cell radiolabeling with 89Zr for GB10 therapy in vitro and in vivo fate mapping against a xenograft of patient-derived GBM.AcknowledgementsWe gratefully acknowledge the Walther Oncology Embedding Program, Indiana University Simon Cancer Center, and In Vivo Therapeutics Core.ReferencesWang J, Matosevic S. NT5E/CD73 as correlative factor of patient survival and natural killer cell infiltration in glioblastoma. J Clin Med 2019;8(10):1526.Wang J, Lupo KB, Chambers AM, Matosevic S. Purinergic targeting enhances immunotherapy of CD73+ solid tumors with piggyBac-engineered chimeric antigen receptor natural killer cells. J Immunother Cancer 2018;6(1):136.Yan A, Joachims ML, Thompson LF, Miller AD, Canoll PD, Bynoe MS. CD73 promotes glioblastoma pathogenesis and enhances its chemoresistance via A2B adenosine receptor signaling. J Neurosci 2019;39(22):4387.Flink J, Muzi M, Peck M, Krohn K. Multimodality brain tumor imaging: mr imaging, PET, and PET/MR imaging. J Nucl 2015;5(10):1554–1561.


Blood ◽  
1994 ◽  
Vol 84 (7) ◽  
pp. 2261-2268 ◽  
Author(s):  
P Allavena ◽  
C Paganin ◽  
D Zhou ◽  
G Bianchi ◽  
S Sozzani ◽  
...  

Abstract We investigated the chemotactic activity of interleukin (IL)-12 on human natural killer (NK) cells and other leukocyte subsets. It was found that IL-12 induced directional migration of highly enriched preparations of NK cells (> 80% CD16+ and CD56+) and CD3-activated T cells (both of CD4 and CD8 subset), but not resting T cells and monocytes. On the contrary, purified polymorphonuclear cells (PMN) showed significant and reproducible chemotactic response to IL-12. The effects of IL-12 on leukocyte migration were observed in a narrow concentration range with a peak at approximately 7.5 ng/mL, and were abrogated by monoclonal antibody (MoAb) anti-IL-12 or after cytokine boiling. We also investigated the interaction of NK cells with vascular endothelium in vitro. Overnight treatment of NK cells with IL-12 augmented their binding to cultured endothelial cells (EC) obtained from umbilical veins. IL-12-increased binding was better observed when resting rather than IL-1-activated EC were used as substratum of adhesion. IL-12-augmented binding of NK cells to resting or IL-1- activated EC involved the LFA-1/ICAM-1 and VLA-4/VCAM-1 pathways. Thus, by inducing migration and interaction with EC, IL-12 regulates crucial determinants of NK-cell recruitment in tissues.


Blood ◽  
1994 ◽  
Vol 84 (7) ◽  
pp. 2261-2268
Author(s):  
P Allavena ◽  
C Paganin ◽  
D Zhou ◽  
G Bianchi ◽  
S Sozzani ◽  
...  

We investigated the chemotactic activity of interleukin (IL)-12 on human natural killer (NK) cells and other leukocyte subsets. It was found that IL-12 induced directional migration of highly enriched preparations of NK cells (> 80% CD16+ and CD56+) and CD3-activated T cells (both of CD4 and CD8 subset), but not resting T cells and monocytes. On the contrary, purified polymorphonuclear cells (PMN) showed significant and reproducible chemotactic response to IL-12. The effects of IL-12 on leukocyte migration were observed in a narrow concentration range with a peak at approximately 7.5 ng/mL, and were abrogated by monoclonal antibody (MoAb) anti-IL-12 or after cytokine boiling. We also investigated the interaction of NK cells with vascular endothelium in vitro. Overnight treatment of NK cells with IL-12 augmented their binding to cultured endothelial cells (EC) obtained from umbilical veins. IL-12-increased binding was better observed when resting rather than IL-1-activated EC were used as substratum of adhesion. IL-12-augmented binding of NK cells to resting or IL-1- activated EC involved the LFA-1/ICAM-1 and VLA-4/VCAM-1 pathways. Thus, by inducing migration and interaction with EC, IL-12 regulates crucial determinants of NK-cell recruitment in tissues.


Sign in / Sign up

Export Citation Format

Share Document