Taking aim at protein translation in AML

Blood ◽  
2009 ◽  
Vol 114 (8) ◽  
pp. 1458-1459 ◽  
Author(s):  
Martin Carroll

Abstract In this issue of Blood, Tamburini and colleagues have studied the regulation of protein translation control in primary AML cells and describe a mTORC1-independent mechanism of regulation of the translation initiation complex that can be targeted with 4EGI-1, a small molecule inhibitor of translation, leading to death of the cells.1 This and other recent studies add to a growing body of evidence that AML cells have a critical dependence on active protein translation, which may provide an Achilles' heel for the tumor cells that can be targeted therapeutically.

2021 ◽  
Vol 12 (1) ◽  
pp. 129-131
Author(s):  
Saranya Auparakkitanon ◽  
Prapon Wilairat

Abstract A unique feature of eukaryote initiation of protein translation is a so-called scanning of 5′-untranslated region (5′-UTR) by a ribosome initiation complex to enable bound Met-tRNAi access to the initiation codon located further downstream. Here, we propose a universal scanning-free translation initiation model that is independent of 5′-UTR length and applicable to both 5′-m7G (capped) and uncapped mRNAs.


2010 ◽  
Vol 108 (3) ◽  
pp. 1046-1051 ◽  
Author(s):  
R. Cencic ◽  
D. R. Hall ◽  
F. Robert ◽  
Y. Du ◽  
J. Min ◽  
...  

2007 ◽  
Vol 27 (12) ◽  
pp. 4513-4525 ◽  
Author(s):  
Kara Hoar ◽  
Arijit Chakravarty ◽  
Claudia Rabino ◽  
Deborah Wysong ◽  
Douglas Bowman ◽  
...  

ABSTRACT Aurora A kinase plays an essential role in the proper assembly and function of the mitotic spindle, as its perturbation causes defects in centrosome separation, spindle pole organization, and chromosome congression. Moreover, Aurora A disruption leads to cell death via a mechanism that involves aneuploidy generation. However, the link between the immediate functional consequences of Aurora A inhibition and the development of aneuploidy is not clearly defined. In this study, we delineate the sequence of events that lead to aneuploidy following Aurora A inhibition using MLN8054, a selective Aurora A small-molecule inhibitor. Human tumor cells treated with MLN8054 show a high incidence of abnormal mitotic spindles, often with unseparated centrosomes. Although these spindle defects result in mitotic delays, cells ultimately divide at a frequency near that of untreated cells. We show that many of the spindles in the dividing cells are bipolar, although they lack centrosomes at one or more spindle poles. MLN8054-treated cells frequently show alignment defects during metaphase, lagging chromosomes in anaphase, and chromatin bridges during telophase. Consistent with the chromosome segregation defects, cells treated with MLN8054 develop aneuploidy over time. Taken together, these results suggest that Aurora A inhibition kills tumor cells through the development of deleterious aneuploidy.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3717-3717
Author(s):  
Matthew J. Barth ◽  
Cory Mavis ◽  
Francisco J. Hernandez-Ilizaliturri ◽  
Myron S. Czuczman

Abstract Abstract 3717 The incorporation of combined-modality therapy, risk-stratified chemotherapy selection, high-dose chemotherapy and autologous stem cell support (HDC-ASCS), and monitoring treatment response by functional imaging are factors that have contributed to the improvement in clinical outcomes in HL patients. Unfortunately, those patients not eligible for or that have failed HDC-ASCS remain a challenge for the treating oncologist, stressing the need for novel therapeutic strategies. Significant improvements in the understanding of the biology of HL have been achieved, including cellular pathways altered in HL (e.g. the ubiquitin-proteasome system) and the role of the tumor microenvironment. MLN4924 is an investigational small-molecule inhibitor of NEDD8-activating enzyme (NAE). NAE is an enzyme responsible for activating NEDD8, an ubiquitin-like molecule in the neddylation cascade that is responsible for cullin-ring ligase (CRL) mediated polyubiquitination of proteins targeting them for proteasomal degradation. In order to better understand the activity of MLN4924 in HL, we performed pre-clinical testing in IkB wild type (L-1236), IkB mutated (KM-H2 and L-428) HL cell lines, and in primary tumor cells derived from a HL patient. Malignant cells were exposed to escalating doses of MLN4924 and changes in cell viability were quantified at different time periods by alamar Blue reduction assay. Patient tumor cells were incubated with MLN4924 for 48 hrs and cell viability was determined using the CellTiterGlo assay. Induction of apoptosis in HL cell lines following exposure to MLN4924 was determined by flow cytometry for Annexin-V and propidium iodide (PI) staining and western blot for caspase-3 and PARP cleavage. Cell cycle analysis was performed by flow cytometry using PI staining. Inhibition of NAE by MLN4924 in HL cell lines was measured by western blot for NEDD8-cullin. Finally, changes in NF-kB activity following MLN4924 exposure were determined by p65 nuclear localization using Image stream technology. MLN4924 exhibited a dose- and time-dependent decrease in cell viability in all HL cell lines at nM concentrations. No differences in anti-tumor activity were observed between IkB-wild type (L-1236 IC50 = 250nM) and IkB–mutated HL cell lines (KM-H2 IC50 = 250nM and L-428 IC50 = 300nM). MLN4924 induced apoptosis in a dose-dependent manner in all cell lines tested. In addition, MLN4924 induced cell cycle arrest in G1 phase and inhibition of NAE was demonstrated by a decrease in NEDD8 conjugated CRL. L1236 cells exposed to MLN4924 also demonstrated a decrease in degradation of IκBα as evidenced by increased levels of p-IκBα following exposure to MLN4924 with a corresponding decrease in p65 nuclear translocation. Surprisingly KMH-2 cells, which carry a mutated IκBα protein that is truncated and non-functional, had a decrease in nuclear p65 following exposure to MLN4924, suggesting an alternative mechanism of NF-kB inhibitory activity by MLN4924. In summary, MLN4924 demonstrates activity against HL cells in vitro through inhibition of NF-kB, and is a promising novel agent for the treatment of HL. We continue to investigate the pre-clinical activity of MLN4924 both as a single-agent and in combination with traditional chemotherapy and other novel agents. Disclosures: No relevant conflicts of interest to declare.


Biochemistry ◽  
2018 ◽  
Vol 57 (7) ◽  
pp. 1262-1273 ◽  
Author(s):  
Maroof K. Zafar ◽  
Leena Maddukuri ◽  
Amit Ketkar ◽  
Narsimha R. Penthala ◽  
Megan R. Reed ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document