Successful transfer of alloreactive haploidentical KIR ligand-mismatched natural killer cells after infusion in elderly high risk acute myeloid leukemia patients

Blood ◽  
2011 ◽  
Vol 118 (12) ◽  
pp. 3273-3279 ◽  
Author(s):  
Antonio Curti ◽  
Loredana Ruggeri ◽  
Alessandra D'Addio ◽  
Andrea Bontadini ◽  
Elisa Dan ◽  
...  

Abstract Thirteen patients with acute myeloid leukemia, 5 with active disease, 2 in molecular relapse, and 6 in morphologic complete remission (CR; median age, 62 years; range, 53-73 years) received highly purified CD56+CD3− natural killer (NK) cells from haploidentical killer immunoglobulin-like receptor–ligand mismatched donors after fludarabine/cyclophosphamide immunosuppressive chemotherapy, followed by IL-2. The median number of infused NK cells was 2.74 × 106/Kg. T cells were < 105/Kg. No NK cell–related toxicity, including GVHD, was observed. One of the 5 patients with active disease achieved transient CR, whereas 4 of 5 patients had no clinical benefit. Both patients in molecular relapse achieved CR that lasted for 9 and 4 months, respectively. Three of 6 patients in CR are disease free after 34, 32, and 18 months. After infusion, donor NK cells were found in the peripheral blood of all evaluable patients (peak value on day 10). They were also detected in BM in some cases. Donor-versus-recipient alloreactive NK cells were shown in vivo by the detection of donor-derived NK clones that killed recipient's targets. Adoptively transferred NK cells were alloreactive against recipient's cells, including leukemia. In conclusion, infusion of purified NK cells is feasible in elderly patients with high-risk acute myeloid leukemia. This trial was registered at www.clinicaltrial.gov as NCT00799799.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4287-4287
Author(s):  
Antonio Curti ◽  
Loredana Ruggeri ◽  
Alessandra D'Addio ◽  
Andrea Bontadini ◽  
Valeria Giudice ◽  
...  

Abstract Abstract 4287 Purpose: To evaluate safety, feasibility and anti-leukemia potential of haploidentical KIR-L mismatched natural killer (NK) cell infusion in elderly high risk acute myeloid leukemia (AML) patients. Patients and Methods: Thirteen patients (5 active disease, 2 molecular relapse and 6 complete remissions) with median age 62 years (range 53–73) received NK cell infusion after immunosuppressive chemotherapy (fludarabine/cyclophosphamide), followed by interleukin-2. Highly purified CD56+CD3- NK cells from haploidentical KIR-L mismatched donors were used. The median number of infused NK cells was 2.74 × 106/Kg. T cells were less than 105/Kg. NK cell chimerism, phenotyping, and functional assays were performed. Results: No significant toxicity, including graft versus host disease, related to NK cell infusion was observed. Among patients with active disease, 1/5 obtained transient complete remission (CR), whereas 4/5 patients had no clinical benefit. Both patients in molecular relapse obtained CR, which lasted 9 and 4 months. Three/6 patients in morphologic CR are disease-free after 34, 32 and 18 months. Donor NK cells were demonstrated in the peripheral blood (PB) of all evaluable patients with a peak at day 10 after infusion and, in some cases, also in the bone marrow (BM). NK alloreactivity was demonstrated in vivo by the detection of donor-derived postinfusion NK clones capable of killing recipient targets. Conclusion: Infusion of purified CD56+CD3- NK cells is feasible and safe in elderly high risk AML patients. Adoptively transferred NK cells, which can be detected in PB and BM after infusion, are alloreactive against recipient cells and may induce an anti-leukemic activity. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1120-1120
Author(s):  
Andreas T Björklund ◽  
Mattias Carlsten ◽  
Marie Schaffer ◽  
Lisa Liu ◽  
Sarah A. Cooley ◽  
...  

Abstract Introduction: We here report from an ongoing phase I/II study of HLA-haploidentical NK cell therapy to patients with high-risk myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) not eligible for standard therapies. The preparative regimen consisted of intermediate doses of Cyklophosphamide (Cy), Fludarabin (Flu) and titrated doses of total lymphoid irradiation (TLI). The trial design excluded systemic IL-2 treatment to avoid expansion of regulatory T cells and to test if in vivo expansion could be obtained without IL-2 support. Patients:The first 12 patients were treated with Cy/Flu and an escalating dose of TLI (2 Gy and 4 Gy), followed by infusion of short-term IL-2 activated (16 hours) NK cells. Three patients received daily cyclosporine A after the conditioning. Three had relapsed, chemotherapy-refractory, primary AML, seven had secondary relapsed or refractory MDS-AML and two had high risk MDS with fibrosis. Results: The treatment was well tolerated and no severe non-infectious toxicity could be observed in the patients. The endpoint of expansion (>100 donor NK cells/ul at day 14) was not reached, but six patients had positive microchimerism, NK cells of donor origin detectable by RT-PCR at day 7-14, that thereafter became undetectable within 7-14 days. Four of these six patients achieved complete remission (CR) whereafter they become eligible for and could proceed to allogeneic stem cell transplantation. None of the patients with negative microchimerism obtained CR. Four patients died from progressive disease and three patients, with minor response and progressive disease, died in infections within three months of therapy. Discussion: Although the long-term efficacy needs to be evaluated, the results suggest that a combined regimen with mild conditioning followed by NK cell therapy may induce remission in patients with chemo-refractory disease and provide a bridge to allogeneic stem cell transplantation. Notably, clinical responses were observed after only a minimal in vivo NK cell expansion and were independent on KIR-ligand mismatch. Disclosures Blomberg: VECURA: Employment. Hellström-Lindberg:Celgene: Research Funding.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A893-A893
Author(s):  
Laurent Gauthier ◽  
Angela Virone-Oddos ◽  
Angela Virone-Oddos ◽  
Jochen Beninga ◽  
Benjamin Rossi ◽  
...  

BackgroundThere is a clear need for targeted therapies to treat acute myeloid leukemia (AML), the most common acute leukemia in adults. CD123 (IL-3 receptor alpha chain) is an attractive target for AML treatment.1 However, cytotoxic antibody targeting CD123 proved insufficiently effective in a combination setting in phase II/III clinical trials.2 T-cell engagers targeting CD123 displayed some clinical efficacy but were often associated with cytokine release syndrome and neurotoxicity.3 Interest in the use of NK cells for therapeutic interventions has increased in recent years, as a potential safer alternative to T cells. Several NK-cell activating receptors, such as CD16a, NKG2D, and the natural cytotoxicity receptors NKp30 and NKp46, can be targeted to induce antitumor immunity. We previously reported the development of trifunctional NK-cell engagers (NKCEs) targeting a tumor antigen on cancer cells and co-engaging NKp46 and CD16a on NK cells.4MethodsWe report here the design, characterization and preclinical development of a novel trifunctional NK cell engager (NKCE) targeting CD123 on AML cells and engaging the activating receptors NKp46 and CD16a on NK cells. The CD123 NKCE therapeutic molecule was engineered with humanized antibodies targeting NKp464 and CD123.5 We compared CD123-NKCE and a cytotoxic ADCC-enhanced antibody (Ab) targeting CD123, in terms of antitumor activity in vitro, ex vivo and in vivo. Pharmacokinetic, pharmacodynamic and safety profile of CD123-NKCE were evaluated in non-human primate (NHP) studies.ResultsThe expression of the high affinity Fc gamma receptor CD64 on patient-derived AML cells inhibited the ADCC of the Ab targeting CD123 in vitro and ex vivo, but not the antitumor activity of CD123-NKCE. CD123-NKCE had potent antitumor activity against primary AML blasts and AML cell lines, promoted strong NK-cell activation and induced cytokine secretion only in the presence of AML target cells. Its antitumor activity in mouse model was greater than that of the comparator antibody. Moreover, CD123-NKCE had strong and prolonged pharmacodynamic effects in NHP when used at very low doses, was well-tolerated up to high 3 mg/kg dose and triggered only minor cytokine release.ConclusionsThe data for activity, safety, pharmacokinetics, and pharmacodynamics provided here demonstrate the superiority of CD123-NKCE over comparator cytotoxic antibody, in terms of antitumor activity in vitro, ex vivo, in vivo, and its favorable safety profile, as compared to T-cell therapies. These results constitute proof-of-principle for the efficacy of CD123-NKCE for controlling AML tumors in vivo, and provide consistent support for their clinical development.ReferencesEhninger A, Kramer M, Rollig C, et al. Distribution and levels of cell surface expression of CD33 and CD123 in acute myeloid leukemia. Blood Cancer J 2014;4:e218.Montesinos P, Gail J Roboz GJ, et al. Safety and efficacy of talacotuzumab plus decitabine or decitabine alone in patients with acute myeloid leukemia not eligible for chemotherapy: results from a multicenter, randomized, phase 2/3 study. Leukemia 2021;35(1):62–74.Uy GL, Aldoss I, Foster MC, et al. Flotetuzumab as salvage immunotherapy for refractory acute myeloid leukemia. Blood 2021;137(6):751–762.Gauthier L, Morel A, Anceriz N, et al. Multifunctional natural killer cell engagers targeting NKp46 trigger protective tumor immunity. Cell 2019;177(7):1701–13.Jin L, Lee EM, Ramshaw HS, et al. Monoclonal antibody-mediated targeting of CD123, IL-3 receptor alpha chain, eliminates human acute myeloid leukemic stem cells. Cell Stem Cell 2009;5:31–42.


Author(s):  
Adeline Crinier ◽  
Pierre-Yves Dumas ◽  
Bertrand Escalière ◽  
Christelle Piperoglou ◽  
Laurine Gil ◽  
...  

SummaryNatural killer (NK) cells are innate cytotoxic lymphoid cells (ILCs) involved in the killing of infected and tumor cells. Among human and mouse NK cells from the spleen and blood, we previously identified by single-cell RNA sequencing (scRNAseq) two similar major subsets, NK1 and NK2. Using the same technology, we report here the identification, by single-cell RNA sequencing (scRNAseq), of three NK cell subpopulations in human bone marrow. Pseudotime analysis identified a subset of resident CD56bright NK cells, NK0 cells, as the precursor of both circulating CD56dim NK1-like NK cells and CD56bright NK2-like NK cells in human bone marrow and spleen under physiological conditions. Transcriptomic profiles of bone marrow NK cells from patients with acute myeloid leukemia (AML) exhibited stress-induced repression of NK cell effector functions, highlighting the profound impact of this disease on NK cell heterogeneity. Bone marrow NK cells from AML patients exhibited reduced levels of CD160, but the CD160high group had a significantly higher survival rate.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2663-2663
Author(s):  
Dongxia Xing ◽  
Alan G. Ramsay ◽  
William Decker ◽  
Sufang Li ◽  
Simon Robinson ◽  
...  

Abstract Abstract 2663 Poster Board II-639 Natural killer (NK) cells are an important component of the innate immune surveillance of tumor cells. Defective NK cell function has been correlated with poor prognosis in acute myeloid leukemia (AML). It is well established that NK cell-mediated cytolytic activity is significantly diminished in AML patients; the mechanisms of this hypo-function are not well understood. Identifying mechanisms of tumor-induced immune suppression of lymphocytes function will aid the development of effective immunotherapeutic strategies. In the present study we examined the molecular basis for impaired NK cell responses in AML and demonstrate impaired NK cell immunological synapse formation. Confocal microscopy was used to visualize F-actin polymerization at the immune synapse between CD56+ CD3- NK cells and autologous AML blasts. We identified a significant reduction in formation of the NK cell immune synapse (NKIS) (p<0.001) from AML patients compared healthy donors (> 70% reduction). This defect was induced by direct tumor contact since NK cell defects were induced in healthy NK cells when they were co-cultured (in direct contact) for 48 hr with allogeneic AML blasts, but not with healthy allogeneic monocytes (P < 0.01). In control transwell co-culture experiments, where the NK cells and AML blast were not in direct contact, we did not observe the induced defect. We examined the molecular nature of the AML blast induced defect by quantifying recruitment of a number of these NK cell adhesion and cytoskeletal signaling proteins to the immune synapse. Following primary co-culture with AML blasts, healthy NK cells showed significantly reduced recruitment of integrin LFA-1, CD2, Lck, WASP, and tyrosine-phosphorylated protein to the NK-AML target interactions synapse (P < 0.001). These studies demonstrate a role for the tumor induced immune suppression of NK cells and will aid in the development of immunotherapeutic approaches targeting AML. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yang Xiao ◽  
Jinghong Chen ◽  
Jia Wang ◽  
Wei Guan ◽  
Mengzhen Wang ◽  
...  

Acute myeloid leukemia (AML), a malignant disorder of hemopoietic stem cells. AML can escape immunosurveillance of natural killer (NK) by gene mutation, fusions, and epigenetic modification, while the mechanism is not clearly understood. Here we show that the expression of Intercellular adhesion molecule‐1 (ICAM‐1, CD54) is silenced in AML cells. Decitabine could upregulate ICAM-1 expression, which contributes to the NK-AML cell conjugates and helps NK cells kill AML cells. We also show that ICAM-1 high expression can reverse the AML immune evasion and activate NK cells function in vivo. This study suggests that a combination of the hypomethylating agent and NK cell infusion could be a new strategy to cure AML.


Haematologica ◽  
2020 ◽  
Author(s):  
Mark Gurney ◽  
Arwen Stikvoort ◽  
Emma Nolan ◽  
Lucy Kirkham-McCarthy ◽  
Stanislav Khoruzhenko ◽  
...  

There is a strong biological rationale for the augmentation of allogeneic natural killer (NK) cell therapies with a chimeric antigen receptor (CAR) to enhance acute myeloid leukemia (AML) targeting. CD38 is an established immunotherapeutic target in multiple myeloma and under investigation as a target antigen in AML. CD38 expression on NK cells and its further induction during ex vivo NK cell expansion represents a barrier to the development of a CD38 CAR-NK cell therapy. We set out to develop a CD38 CAR-NK cell therapy for AML, first by using an NK cell line which has low baseline CD38 expression and subsequently healthy donor expanded NK cells. To overcome anticipated fratricide due to NK cell CD38 expression when using primary expanded NK cells, we applied CRISPR/Cas9 genome editing to disrupt the CD38 gene during expansion achieving a mean knockdown efficiency of 84%. The resulting CD38 KD expanded NK cells, after expression of an affinity optimized CD38 CAR, showed reduced NK cell fratricide and an enhanced ability to target primary AML blasts. Furthermore, the cytotoxic potential of CD38 CAR-NK cells was augmented by pre-treatment of the AML cells with all-trans retinoic acid which drove enhanced CD38 expression offering a rational combination therapy. These findings support the further investigation of CD38 KD - CD38 CAR-NK cells as a viable immunotherapeutic approach to the treatment of AML.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. SCI-27-SCI-27
Author(s):  
Sarah A. Cooley

Natural killer (NK) cells, the first lymphocyte subset to reconstitute after hematopoietic cell transplantation (HCT), may enhance transplant outcomes by killing virally-infected or malignant cells to reduce relapse and treatment-related mortality by promoting engraftment and by reducing graft vs. host disease. The function of NK cells is regulated by the net balance of signaling via several families of activating or inhibitory receptors. The killer-cell immunoglobulin-like receptor (KIR) family is of particular importance in HCT because of its interactions with class I human leukocyte antigen (HLA) molecules. HLA-C, HLA-Bw4 and some HLA-A allotypes function as ligands for the inhibitory KIR receptors, thus mediating tolerance to self. HLA-mismatched HCT may generate alloreactive NK cells in the recipient when there is a KIR-ligand mismatch at HLA-C, B or A. The proof of concept for this principle was established by the Perugia group in haploidentical transplants, where KIR-ligand mismatch was associated with reduced relapse in patients with acute myeloid leukemia. Subsequent groups have studied this and other algorithms, including KIR ligand absence or KIR-KIR ligand genotyping to evaluate the role of NK cells in mediating protection after allogeneic HCT. Human KIR haplotypes are defined by gene content, where the A haplotype contains mainly inhibitory KIR, and B haplotypes contain more activating KIR. Unrelated donors with more KIR B haplotype genes have been associated with protection from relapse and improved survival in AML, an effect which is enhanced in recipients expressing HLA-C1. Although NK cells mediate beneficial effects after HCT, compared to adult donor NK cells, engrafting NK cells are immature and hyporesponsive when exposed to tumor targets. Recently human cytomegalovirus (CMV) has been shown to drive the expansion of a population of long-lived CD57+NKG2C+ NK cells with attributes of immunologic memory. These cells have heightened capacity for cytokine production or cytolytic response to tumor targets. Several groups have shown that CMV reactivation correlates with reduced relapse after allogeneic HCT, suggesting that these CMV “adaptive” NK cells may contribute to the graft vs. leukemia effect. Strategies to isolate and expand “adaptive” NK cells without clinical CMV reactivation are being explored. Lastly, adult donor NK cells are an appealing population to exploit for adoptive cellular therapy. Donors can be chosen based on predicted NK cell alloreactivity or based on KIR gene content. Adoptively transferred NK cells which expand and proliferate in vivo in response to cytokine stimulation (IL-2 or IL-15) are potent anti-tumor effectors which do not mediate graft vs. host disease. Several groups are using haploidentical adult NK cell products to treat acute myeloid leukemia, multiple myeloma, lymphoma, myelodysplasic syndrome and a variety of solid tumors. Various approaches using adoptive transfer of NK cells, together with HCT, targeting antibodies which mediate antibody dependent cellular cytotoxicity, or cytokine stimulation are being tested clinically. In summary, we are just beginning to define the complexity of NK cell interactions with HLA and other ligands and to describe different properties of various NK cell subsets to develop more sophisticated strategies to exploit NK cells to treat cancer. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Yu-Jun Dai ◽  
Si-Yuan He ◽  
Fang Hu ◽  
Xue-Ping Li ◽  
Jian-Ming Zhang ◽  
...  

AbstractAcute myeloid leukemia (AML) is still incurable due to its heterogeneity and complexity of tumor microenvironment. It is imperative therefore to understand the molecular pathogenesis of AML and identify leukemia-associated biomarkers to formulate effective treatment strategies. Here, we systematically analyzed the clinical characters and natural killer (NK) cells portion in seventy newly-diagnosis (ND) AML patients. We found that the proportion of NK cells in the bone marrow of ND-AML patients could predict the prognosis of patients by analyzing the types and expression abundance of NK related ligands in tumor cells. Furthermore, MCL1 inhibitor but not BCL2 inhibitor combined with NK cell-based immunotherapy could effectively improve the therapeutic efficiency via inhibiting proliferation and inducing apoptosis of AML primary cells as well as cell lines in vitro. There results provide valuable insights that could help for exploring new therapeutic strategies for leukemia treatment.


2019 ◽  
Vol 3 (13) ◽  
pp. 1970-1980 ◽  
Author(s):  
Sarah Cooley ◽  
Fiona He ◽  
Veronika Bachanova ◽  
Gregory M. Vercellotti ◽  
Todd E. DeFor ◽  
...  

Abstract In vivo expansion of haploidentical natural killer (NK) cell infusions with interleukin-2 (IL-2) can induce remission of refractory acute myeloid leukemia, but efficacy may be hampered by concurrent stimulation of host regulatory T cells. To overcome this limitation, we substituted the NK homeostatic factor IL-15 in 2 phase 1/2 trials. Forty-two patients received either intravenous (IV) (NCT01385423) or subcutaneous (SC) (NCT02395822) recombinant human IL-15 (rhIL-15) after lymphodepleting chemotherapy and haploidentical NK cells. Escalating doses of rhIL-15 (0.3-1.0 μg/kg) were given on 12 consecutive days in a phase 1 trial. Of 26 patients, 36% had robust in vivo NK-cell expansion at day 14, and 32% achieved complete remission. Hypothesizing that SC dosing of rhIL-15 would be safer and better tolerated, 16 patients received 10 once per day doses of SC rhIL-15 at 2.0 μg/kg on a phase 2 trial. NK-cell expansion at day 14 was seen in 27% of the patients, and 40% achieved remission. rhIL-15 induced better rates of in vivo NK-cell expansion and remission compared with previous trials with IL-2, but it was associated with previously unreported cytokine release syndrome (CRS) after SC but not IV dosing. CRS was observed in 56% of patients given SC rhIL-15 (with concurrent neurologic toxicity in 5 of 9 patients) and was responsive to steroids and tocilizumab. SC administration was associated with slower pharmacokinetic clearance and higher levels of IL-6 than IV dosing. These novel trials testing the use of IL-15 to potentiate cell therapy suggest that dosing schedules based on pharmacokinetics and pharmacodynamics will preserve the therapeutic benefits of IL-15 and minimize CRS. These trials were registered at www.clinicaltrials.gov as #NCT01385423 and #NCT02395822.


Sign in / Sign up

Export Citation Format

Share Document