scholarly journals Functional inhibition of osteoblastic cells in an in vivo mouse model of myeloid leukemia

Blood ◽  
2012 ◽  
Vol 119 (2) ◽  
pp. 540-550 ◽  
Author(s):  
Benjamin J. Frisch ◽  
John M. Ashton ◽  
Lianping Xing ◽  
Michael W. Becker ◽  
Craig T. Jordan ◽  
...  

Pancytopenia is a major cause of morbidity in acute myeloid leukemia (AML), yet its cause is unclear. Normal osteoblastic cells have been shown to support hematopoiesis. To define the effects of leukemia on osteoblastic cells, we used an immunocompetent murine model of AML. Leukemic mice had inhibition of osteoblastic cells, with decreased serum levels of the bone formation marker osteocalcin. Osteoprogenitor cells and endosteal-lining osteopontin+ cells were reduced, and osteocalcin mRNA in CD45− marrow cells was diminished. This resulted in severe loss of mineralized bone. Osteoclasts were only transiently increased without significant increases in bone resorption, and their inhibition only partially rescued leukemia-induced bone loss. In vitro data suggested that a leukemia-derived secreted factor inhibited osteoblastic cells. Because the chemokine CCL-3 was recently reported to inhibit osteoblastic function in myeloma, we tested its expression in our model and in AML patients. Consistent with its potential novel role in leukemic-dependent bone loss, CCL-3 mRNA was significantly increased in malignant marrow cells from leukemic mice and from samples from AML patients. Based on these results, we propose that therapeutic mitigation of leukemia-induced uncoupling of osteoblastic and osteoclastic cells may represent a novel approach to promote normal hematopoiesis in patients with myeloid neoplasms.

2008 ◽  
Vol 2008 ◽  
pp. 1-6 ◽  
Author(s):  
Evangelos C. Alexopoulos ◽  
Xenophon Cominos ◽  
Ioannis P. Trougakos ◽  
Magda Lourda ◽  
Efstathios S. Gonos ◽  
...  

Welding fumes contain metals and other toxic substances known or strongly suspected to be related with oxidative stress and premature cellular senescence. Apolipoprotein J/Clusterin (ApoJ/CLU) is a glycoprotein that is differentially regulated in various physiological and disease states including ageing and age-related diseases. In vitro data showed that exposure of human diploid fibroblasts to hexavalent chromium (Cr(VI)) resulted in premature senescence and significant upregulation of the ApoJ/CLU protein. In this study we analyzed blood and urine samples from shipyard industry welders being exposed to different levels of Cr(VI) over a period of five months in order to assay in vivo the relation of ApoJ/CLU serum levels with Cr(VI). Our findings confirmed the previously reported in vitro data since reduction of Cr levels, after a worksite intervention, associated with lower levels of ApoJ/CLU serum levels. We concluded that the human ApoJ/CLU gene is responsive to the acute in vivo oxidative stress induced by heavy metals such as hexavalent chromium.


1993 ◽  
Vol 21 (2) ◽  
pp. 173-180
Author(s):  
Gunnar Johanson

This presentation addresses some aspects of the methodology, advantages and problems associated with toxicokinetic modelling based on in vitro data. By using toxicokinetic models, particularly physiologically-based ones, it is possible, in principle, to describe whole body toxicokinetics, target doses and toxic effects from in vitro data. Modelling can be divided into three major steps: 1) to relate external exposure (applied dose) of xenobiotic to target dose; 2) to establish the relationship between target dose and effect (in vitro data, e.g. metabolism in microsomes, partitioning in tissue homogenates, and toxicity in cell cultures, are useful in both steps); and 3) to relate external exposure to toxic effect by combining the first two steps. Extrapolations from in vitro to in vivo, between animal and man, and between high and low doses, can easily be carried out by toxicokinetic simulations. In addition, several factors that may affect the toxic response by changing the target dose, such as route of exposure and physical activity, can be studied. New insights concerning the processes involved in toxicity often emerge during the design, refinement and validation of the model. The modelling approach is illustrated by two examples: 1) the carcinogenicity of 1,3-butadiene; and 2) the haematotoxicity of 2-butoxyethanol. Toxicokinetic modelling is an important tool in toxicological risk assessment based on in vitro data. Many factors, some of which can, and should be, studied in vitro, are involved in the expression of toxicity. Successful modelling depends on the identification and quantification of these factors.


1970 ◽  
Vol 131 (6) ◽  
pp. 1261-1270 ◽  
Author(s):  
George C. Saunders ◽  
Douglas Swartzendruber

Cells capable of reacting with sheep erythrocyte (SRBC) antigen to maturate and produce hemolysin appear simultaneously in the bone marrow and spleen of 1-day old Swiss-Webster mice. However, hemolysin-producing cell clones (HPCC) do not result. Complete functional precursor units generally appear in the spleens of mice older than 3 days. In vivo and in vitro data correlate well in this regard. Complete precursor units are not seen in the bone marrow and only very rarely in the thymus. The efficiency of precursor units of neonatal mice when they become functional approximates that of the mature animal when based on the doubling time of plaque-forming cells (PFC). Possible explanations of the initial appearance of incomplete precursor units have been discussed.


2003 ◽  
Vol 59 (5-6) ◽  
pp. 429-442 ◽  
Author(s):  
Xue-Qing Li ◽  
Anders Bj�rkman ◽  
Tommy B. Andersson ◽  
Lars L. Gustafsson ◽  
Collen M. Masimirembwa

2002 ◽  
Vol 46 (9) ◽  
pp. 3039-3041 ◽  
Author(s):  
Sofia Perea ◽  
Gloria Gonzalez ◽  
Annette W. Fothergill ◽  
William R. Kirkpatrick ◽  
Michael G. Rinaldi ◽  
...  

ABSTRACT The interaction between caspofungin acetate and voriconazole was studied in vitro by using 48 clinical Aspergillus spp. isolates obtained from patients with invasive aspergillosis. MICs were determined by the NCCLS broth microdilution method. Synergy, defined as a fractional inhibitory concentration (FIC) index of <1, was detected in 87.5% of the interactions; an additive effect, defined as an FIC index of 1.0, was observed in 4.2% of the interactions; and a subadditive effect, defined as an FIC index of 1.0 to 2.0, was found in 8.3% of the interactions. No antagonism was observed. Animal models are required to validate the in vivo significance of these in vitro data presented for the combination of caspofungin and voriconazole.


2016 ◽  
Vol 77 ◽  
pp. 54-64 ◽  
Author(s):  
Louis Anthony (Tony) Cox ◽  
Douglas A. Popken ◽  
A. Michael Kaplan ◽  
Laura M. Plunkett ◽  
Richard A. Becker

2002 ◽  
Vol 46 (2) ◽  
pp. 514-516 ◽  
Author(s):  
Peter D. Walzer ◽  
Alan Ashbaugh

ABSTRACT Terbinafine, an allylamine used to treat onychomycosis, has been reported to be active against rat Pneumocystis carinii in vitro and in vivo. By contrast, our in vitro data showed that the 50% inhibitory concentration of terbinafine against rat P. carinii is 3.7 μg/ml, a level that cannot be clinically achieved in serum. In the present study, terbinafine administered orally at doses of 20 to 400 mg/kg/day and 50 to 250 mg/kg/day was ineffective therapy for mouse and rat models of pneumocystosis, respectively. These results emphasize the complexities of P. carinii drug testing and the need for caution before considering studies in humans.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2605-2605
Author(s):  
Lars Bullinger ◽  
Konstanze Dohner ◽  
Richard F. Schlenk ◽  
Frank G. Rucker ◽  
Jonathan R. Pollack ◽  
...  

Abstract Inhibitors of histone deacetylases (HDACIs) like valproic acid (VPA) display activity in murine leukemia models, and induce tumor-selective cytoxicity against blasts from patients with acute myeloid leukemia (AML). However, despite of the existing knowledge of the potential function of HDACIs, there remain many unsolved questions especially regarding the factors that determine whether a cancer cell undergoes cell cycle arrest, differentiation, or death in response to HDACIs. Furthermore, there is still limited data on HDACIs effects in vivo, as well as HDACIs function in combination with standard induction chemotherapy, as most studies evaluated HDACIs as single agent in vitro. Thus, our first goal was to determine a VPA response signature in different myeloid leukemia cell lines in vitro, followed by an in vivo analysis of VPA effects in blasts from adult de novo AML patients entered within two randomized multicenter treatment trials of the German-Austrian AML Study Group. To define an VPA in vitro “response signature” we profiled gene expression in myeloid leukemia cell lines (HL-60, NB-4, HEL-1, CMK and K-562) following 48 hours of VPA treatment by using DNA Microarray technology. In accordance with previous studies in vitro VPA treatment of myeloid cell lines induced the expression of the cyclin-dependent kinase inhibitors CDKN1A and CDKN2D coding for p21 and p19, respectively. Supervised analyses revealed many genes known to be associated with a G1 arrest. In all cell lines except for CMK we examined an up-regulation of TNFSF10 coding for TRAIL, as well as differential regulation of other genes involved in apoptosis. Furthermore, gene set enrichment analyses showed a significant down-regulation of genes involved in DNA metabolism and DNA repair. Next, we evaluated the VPA effects on gene expression in AML samples collected within the AMLSG 07-04 trial for younger (age<60yrs) and within the AMLSG 06-04 trial for older adults (age>60yrs), in which patients are randomized to receive standard induction chemotherapy (idarubicine, cytarabine, and etoposide = ICE) with or without concomitant VPA. We profiled gene expression in diagnostic AML blasts and following 48 hours of treatment with ICE or ICE/VPA. First results from our ongoing analysis of in vivo VPA treated samples are in accordance with our cell line experiments as e.g. we also see an induction of CDKN1A expression. However, the picture observed is less homogenous as concomitant administration of ICE, as well as other factors, like e.g. VPA serum levels, might substantially influence the in vivo VPA response. Nevertheless, our data are likely to provide new insights into the VPA effect in vivo, and this study may proof to be useful to predict AML patients likely to benefit from VPA treatment. To achieve this goal, we are currently analyzing additional samples, and we are planning to correlate gene expression findings with histone acetylation status, VPA serum levels, cytogenetic, and molecular genetic data.


Sign in / Sign up

Export Citation Format

Share Document