scholarly journals Donor immunization with WT1 peptide augments antileukemic activity after MHC-matched bone marrow transplantation

Blood ◽  
2011 ◽  
Vol 118 (19) ◽  
pp. 5319-5329 ◽  
Author(s):  
Holbrook E. Kohrt ◽  
Antonia Müller ◽  
Jeanette Baker ◽  
Matthew J. Goldstein ◽  
Evan Newell ◽  
...  

Abstract The curative potential of MHC-matched allogeneic bone marrow transplantation (BMT) is in part because of immunologic graft-versus-tumor (GvT) reactions mediated by donor T cells that recognize host minor histocompatibility antigens. Immunization with leukemia-associated antigens, such as Wilms Tumor 1 (WT1) peptides, induces a T-cell population that is tumor antigen specific. We determined whether allogeneic BMT combined with immunotherapy using WT1 peptide vaccination of donors induced more potent antitumor activity than either therapy alone. WT1 peptide vaccinations of healthy donor mice induced CD8+ T cells that were specifically reactive to WT1-expressing FBL3 leukemia cells. We found that peptide immunization was effective as a prophylactic vaccination before tumor challenge, yet was ineffective as a therapeutic vaccination in tumor-bearing mice. BMT from vaccinated healthy MHC-matched donors, but not syngeneic donors, into recipient tumor-bearing mice was effective as a therapeutic maneuver and resulted in eradication of FBL3 leukemia. The transfer of total CD8+ T cells from immunized donors was more effective than the transfer of WT1-tetramer+CD8+ T cells and both required CD4+ T-cell help for maximal antitumor activity. These findings show that WT1 peptide vaccination of donor mice can dramatically enhance GvT activity after MHC-matched allogeneic BMT.

Blood ◽  
1985 ◽  
Vol 66 (2) ◽  
pp. 428-431 ◽  
Author(s):  
GC de Gast ◽  
LF Verdonck ◽  
JM Middeldorp ◽  
TH The ◽  
A Hekker ◽  
...  

Abstract In 22 patients with malignancies, treated with high-dose chemoradiotherapy and autologous bone marrow transplantation (BMT), peripheral blood T cell subsets and functions were studied. In ten cytomegalovirus (CMV)-negative patients, CD4+ and CD8+ T cells (representing T cells of the helper/inducer phenotype and T cells of the suppressor/cytotoxic phenotype, respectively), recovered slowly and simultaneously. In 12 CMV-positive patients, however, CD8+ T cells recovered more rapidly than CD4+ T cells and rose to increased counts. No T cells with an immature phenotype (CD1+, OKT6+) were observed. Lymphocyte stimulation by herpes simplex virus infected fibroblasts (and by CMV-infected fibroblasts in CMV-positive patients) in contrast remained high and even increased after BMT in both groups. These data indicate that T cell recovery after autologous BMT is mainly due to proliferation of mature T cells present in the BM graft and not to generation of new T cells from T cell precursors.


Blood ◽  
2008 ◽  
Vol 112 (4) ◽  
pp. 1522-1529 ◽  
Author(s):  
Kai Sun ◽  
Minghui Li ◽  
Thomas J. Sayers ◽  
Lisbeth A. Welniak ◽  
William J. Murphy

Abstract Dissociating graft-versus-tumor (GVT) effect from acute graft-versus-host disease (GVHD) still remains a great challenge in allogeneic bone marrow transplantation (allo-BMT). Bortezomib, a proteasome inhibitor, has shown impressive efficacy as a single agent in patients with hematologic malignancies but can result in toxicity when administered late after allogeneic transplantation in murine models of GVHD. In the current study, the effects of T-cell subsets and their associated cytokines on the efficacy of bortezomib in murine allogeneic BMT were investigated. Increased levels of serum tumor necrosis factor-α (TNFα) and interferon-γ (IFNγ) were observed after allo-BMT and continuous bortezomib administration. Bortezomib-induced GVHD-dependent mortality was preventable by depletion of CD4+ but not CD8+ T cells from the donor graft. The improved survival correlated with markedly reduced serum TNFα but not IFNγ levels. Transfer of Tnf−/− T cells also protected recipients from bortezomib-induced GVHD-dependent toxicity. Importantly, prolonged administration of bortezomib after transplantation of purified CD8+ T cells resulted in enhanced GVT response, which was dependent on donor CD8+ T cell–derived IFNγ. These results indicate that decreased toxicity and increased efficacy of bortezomib in murine allo-BMT can be achieved by removal of CD4+ T cells from the graft or by inhibiting TNFα.


Blood ◽  
1985 ◽  
Vol 66 (2) ◽  
pp. 428-431 ◽  
Author(s):  
GC de Gast ◽  
LF Verdonck ◽  
JM Middeldorp ◽  
TH The ◽  
A Hekker ◽  
...  

In 22 patients with malignancies, treated with high-dose chemoradiotherapy and autologous bone marrow transplantation (BMT), peripheral blood T cell subsets and functions were studied. In ten cytomegalovirus (CMV)-negative patients, CD4+ and CD8+ T cells (representing T cells of the helper/inducer phenotype and T cells of the suppressor/cytotoxic phenotype, respectively), recovered slowly and simultaneously. In 12 CMV-positive patients, however, CD8+ T cells recovered more rapidly than CD4+ T cells and rose to increased counts. No T cells with an immature phenotype (CD1+, OKT6+) were observed. Lymphocyte stimulation by herpes simplex virus infected fibroblasts (and by CMV-infected fibroblasts in CMV-positive patients) in contrast remained high and even increased after BMT in both groups. These data indicate that T cell recovery after autologous BMT is mainly due to proliferation of mature T cells present in the BM graft and not to generation of new T cells from T cell precursors.


Blood ◽  
2005 ◽  
Vol 105 (2) ◽  
pp. 865-873 ◽  
Author(s):  
Onder Alpdogan ◽  
Jeffrey M. Eng ◽  
Stephanie J. Muriglan ◽  
Lucy M. Willis ◽  
Vanessa M. Hubbard ◽  
...  

AbstractInterleukin-15 (IL-15) is a γ-common cytokine that plays an important role in the development, survival, and proliferation of natural killer (NK), NK T, and CD8+ T-cells. We administered IL-15 to recipients of an allogeneic bone marrow transplantation (allo BMT) to determine its effects on immune reconstitution. Posttransplantation IL-15 administration significantly increased donor-derived CD8+ T (mostly CD122+CD44+CD8+ T-cells), NK, and NK T-cells at day +28 in young and old recipients of allo BMT. This was associated with enhanced T-cell and NK-cell function. IL-15 stimulated homeostatic proliferation of donor CD8+ T-cells in recipients of carboxyfluorescein diacetate succinimidyl ester–labeled donor T-cell infusions. Posttransplantation IL-15 administration also resulted in a decrease in apoptotic CD8+ T-cells, an increase in Bcl-2–expressing CD8+ T-cells, and an increase in the fraction of Ki67+ proliferative NK and CD8+ T-cells in recipients of allo BMT. IL-15 did not exacerbate graft-versus-host disease (GVHD) in recipients of T-cell–depleted BMT but could aggravate GVHD in some cases in recipients of a T-cell–repleted BMT. Finally, we found that IL-15 administration could enhance graft-versus-leukemia activity. In conclusion, IL-15 can be administered safely to recipients of a T-cell–depleted allo BMT to enhance CD8+ T, NK, and NK T-cell reconstitution.


1998 ◽  
Vol 72 (10) ◽  
pp. 7733-7744 ◽  
Author(s):  
Mariagabriela Alterio de Goss ◽  
Rafaela Holtappels ◽  
Hans-Peter Steffens ◽  
Jürgen Podlech ◽  
Peter Angele ◽  
...  

ABSTRACT Cytomegalovirus (CMV) infection during the transient immunodeficiency after bone marrow transplantation (BMT) develops into disease unless antiviral CD8 T cells are restored in due course. Histoincompatibility between donor and recipient is associated with increased risk. Complications may include a rejection response against the foreign major histocompatibility complex (MHC) antigens and a lack of antiviral control resulting from a misfit between donor-derived T cells and the antigenic viral peptides presented in recipient tissues. Here we have established a murine model of CMV disease after experimental BMT performed across a single MHC class I disparity. Specifically, BALB/c bone marrow cells expressing the prevailing antigen-presenting molecule Ld were transplanted into the Ld gene deletion mutant BALB/c-H-2dm2, an experimental setting that entails a selective risk of host-versus-graft but not graft-versus-host response. The reconstituted T-cell population proved to be chimeric in that it consisted of Ld-positive donor-derived and Ld-negative recipient-derived cells. Pulmonary infiltrates did not include cytolytic T cells directed against Ld. This finding implies that the infection did not trigger a host-versus-graft response. Notably, upon adoptive transfer, donor-derived CD8 T cells preferentially protected tissues of donor genotype, whereas recipient-derived CD8 T cells protected tissues of either genotype. We infer from these data that the focus on immunodominant antigens presented by Ld within the donor cell population distracted the donor T cells from protecting recipient tissues and that protection in the chimeras was therefore primarily based on recipient T cells. As a consequence, T-cell chimerism after BMT should give a positive prognosis with respect to control of CMV.


Blood ◽  
2008 ◽  
Vol 112 (6) ◽  
pp. 2232-2241 ◽  
Author(s):  
Jeff K. Davies ◽  
John G. Gribben ◽  
Lisa L. Brennan ◽  
Dongin Yuk ◽  
Lee M. Nadler ◽  
...  

AbstractWe report the outcomes of 24 patients with high-risk hematologic malignancies or bone marrow failure (BMF) who received haploidentical bone marrow transplantation (BMT) after ex vivo induction of alloantigen-specific anergy in donor T cells by allostimulation in the presence of costimulatory blockade. Ninety-five percent of evaluable patients engrafted and achieved full donor chimerism. Despite receiving a median T-cell dose of 29 ×106/kg, only 5 of 21 evaluable patients developed grade C (n = 4) or D (n = 1) acute graft-versus-host disease (GVHD), with only one attributable death. Twelve patients died from treatment-related mortality (TRM). Patients reconstituted T-cell subsets and immunoglobulin levels rapidly with evidence of in vivo expansion of pathogen-specific T cells in the early posttransplantation period. Five patients reactivated cytomegalovirus (CMV), only one of whom required extended antiviral treatment. No deaths were attributable to CMV or other viral infections. Only 1 of 12 evaluable patients developed chronic GVHD. Eight patients survive disease-free with normal performance scores (median follow-up, 7 years). Thus, despite significant early TRM, ex vivo alloanergization can support administration of large numbers of haploidentical donor T cells, resulting in rapid immune reconstitution with very few viral infections. Surviving patients have excellent performance status and a low rate of chronic GVHD.


1995 ◽  
Vol 182 (3) ◽  
pp. 759-767 ◽  
Author(s):  
K Sato ◽  
K Ohtsuka ◽  
K Hasegawa ◽  
S Yamagiwa ◽  
H Watanabe ◽  
...  

In addition to the major intrathymic pathway of T cell differentiation, extrathymic pathways of such differentiation have been shown to exist in the liver and intestine. In particular, hepatic T cells of T cell receptors or CD3 of intermediate levels (i.e., intermediate T cell receptor cells) always contain self-reactive clones and sometimes appear at other sites, including the target tissues in autoimmune diseases and the tumor sites in malignancies. To prove their extrathymic origin and self reactivity, in this study we used thymectomized, irradiated (B6 x C3H/He) F1 mice subjected to transplantation of bone marrow cells of B6 mice. It was clearly demonstrated that all T cells generated under athymic conditions in the peripheral immune organs are intermediate CD3 cells. In the case of nonthymectomized irradiated mice, not only intermediate CD3 cells but also high CD3 cells were generated. Phenotypic characterization showed that newly generated intermediate CD3 cells were unique (e.g., interleukin 2 receptor alpha-/beta+ and CD44+ L-selectin-) and were, therefore, distinguishable from thymus-derived T cells. The precursor cells of intermediate CD3 cells in the bone marrow were Thy-1+ CD3-. The extrathymic generation of intermediate CD3 cells was confirmed in other combinations of bone marrow transplantation, C3H --> C3H and B10.Thy1.1 --> B6.Thy1.2. The generated intermediate CD3 cells in the liver contained high levels of self-reactive clones estimated by anti-V beta monoclonal antibodies in conjunction with the endogenous superantigen minor lymphocyte-stimulating system, especially the combination of B6 --> (B6 x C3H/He) (graft-versus-host-situation).(ABSTRACT TRUNCATED AT 250 WORDS)


Blood ◽  
1990 ◽  
Vol 75 (6) ◽  
pp. 1346-1355
Author(s):  
K Offit ◽  
JP Burns ◽  
I Cunningham ◽  
SC Jhanwar ◽  
P Black ◽  
...  

Serial cytogenetic studies were performed on 64 patients with chronic myelogenous leukemia (CML) after T cell-depleted allogeneic bone marrow transplantation (BMT). Forty patients with CML in chronic phase (CP) received cytoreduction followed by BMT with HLA-matched T cell-depleted allogeneic marrow. The remaining 24 patients were transplanted in second chronic, accelerated, or blastic phase, or received T cell- depleted grafts with a dose of T cells added back. The Y chromosome and autosomal heteromorphisms were used to distinguish between donor and host cells. Mixed hematopoietic chimerism (presence of donor and host cells) was identified in 90% of patients in first CP. The Philadelphia (Ph) chromosome reappeared in 16 of the 40 first CP CML patients. As expected, patients who had detectable Ph chromosome positive cells at any time during the posttransplant period had a high likelihood of subsequent clinical relapse. Transient disappearance of the Ph positive clone was rarely observed, and was followed by reappearance of the Ph chromosome or clinical relapse. A subset of engrafted patients with greater than 25% host cells within 3 months post-BMT had a significantly shorter survival time free of cytogenetic or clinical relapse compared with other patients. In patients who had received donor T cells added to the T cell-depleted graft, there was a higher proportion of complete chimerism. Clonal progression of Ph positive as well as negative cells was observed and may be the result of radiation induced breakage. Serial cytogenetic studies of patients post-BMT can provide useful information regarding the biologic and clinical behavior of CML.


Blood ◽  
1988 ◽  
Vol 71 (5) ◽  
pp. 1196-1200 ◽  
Author(s):  
A Velardi ◽  
A Terenzi ◽  
S Cucciaioni ◽  
R Millo ◽  
CE Grossi ◽  
...  

Abstract Peripheral blood T cell subsets were evaluated in 11 patients during the reconstitution phase after allogeneic bone marrow transplantation and compared with 11 age-matched controls. The proportion of cells coexpressing Leu7 and CD11b (C3bi receptor) markers was determined within the CD4+ (T-helper) and the CD8+ (T-suppressor) subsets by two- color immunofluorescence analysis. CD4+ and CD8+ T cells reached normal or near-normal values within the first year posttransplant. In contrast to normal controls, however, most of the cells in both subsets coexpressed the Leu7 and CD11b markers. T cells with such phenotype display the morphological features of granular lymphocytes (GLs) and a functional inability to produce interleukin 2 (IL 2). These T cell imbalances were not related to graft v host disease (GvHD) or to clinically detectable virus infections and may account for some defects of cellular and humoral immunity that occur after bone marrow transplantation./


Blood ◽  
1982 ◽  
Vol 60 (3) ◽  
pp. 578-582 ◽  
Author(s):  
R Fox ◽  
R McMillan ◽  
W Spruce ◽  
P Tani ◽  
D Mason

Abstract Using monoclonal antibodies to cell surface antigens and fluorescent cell sorter analysis, we studied peripheral blood lymphocyte subsets after bone marrow transplantation (BMT). In 13 patients studied 3 mo or more after BMT, the ratio of T-cell subsets defined by antibodies OKT4 and OKT8 was reversed (OKT4/OK%8 = 0.7 +/- 0.3) in comparison to normal volunteers or bone marrow donors (ratio OKT4/OKT8 = 1.7 +/- 0.4) (p less than 0.001). This reversed ratio persisted for up to 3 yr after BMT. In contrast to a previous report, presence of an abnormal ratio of T-cell subsets did not correlate with clinically significant graft- versus-host disease (GVHD). In agreement with a previous study, (26% +/- 8%; less than 4% in normals (p less than 0.001) and antibody OKT10 reactive cells (39% +/- 20% versus 10% +/- 4%) (p less than 0.01), suggesting in vivo activation. However, their PBL did not react with antibody B3/25 (antitransferrin receptor), a marker found on normal PBL after in vitro activation by mitogens (BMT patients less than 5%; normal PBL T cells plus PHA 45% +/- 11%). These results demonstrate that BMT patients have: (A) an abnormal ratio of T-cell subsets in the presence or absence of clinically significant GVDH disease so that these measurements were not useful in monitoring patients; (B) an increased number of T cells with cell surface phenotype (OKT8+, Ia+, OKT10+, B3/25-) that is distinct from normals but similar to patients with infectious mononucleosis or acquired hypogammaglobulinemia.


Sign in / Sign up

Export Citation Format

Share Document