scholarly journals ER stress and autophagy: new discoveries in the mechanism of action and drug resistance of the cyclin-dependent kinase inhibitor flavopiridol

Blood ◽  
2012 ◽  
Vol 120 (6) ◽  
pp. 1262-1273 ◽  
Author(s):  
Emilia Mahoney ◽  
David M. Lucas ◽  
Sneha V. Gupta ◽  
Amy J. Wagner ◽  
Sarah E. M. Herman ◽  
...  

Abstract Cyclin dependent kinase (CDK) inhibitors, such as flavopiridol, demonstrate significant single-agent activity in chronic lymphocytic leukemia (CLL), but the mechanism of action in these nonproliferating cells is unclear. Here we demonstrate that CLL cells undergo autophagy after treatment with therapeutic agents, including fludarabine, CAL-101, and flavopiridol as well as the endoplasmic reticulum (ER) stress-inducing agent thapsigargin. The addition of chloroquine or siRNA against autophagy components enhanced the cytotoxic effects of flavopiridol and thapsigargin, but not the other agents. Similar to thapsigargin, flavopiridol robustly induces a distinct pattern of ER stress in CLL cells that contributes to cell death through IRE1-mediated activation of ASK1 and possibly downstream caspases. Both autophagy and ER stress were documented in tumor cells from CLL patients receiving flavopiridol. Thus, CLL cells undergo autophagy after multiple stimuli, including therapeutic agents, but only with ER stress mediators and CDK inhibitors is autophagy a mechanism of resistance to cell death. These findings collectively demonstrate, for the first time, a novel mechanism of action (ER stress) and drug resistance (autophagy) for CDK inhibitors, such as flavopiridol in CLL, and provide avenues for new therapeutic combination approaches in this disease.

Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1292 ◽  
Author(s):  
Shirin Hafezi ◽  
Mohamed Rahmani

The major form of cell death in normal as well as malignant cells is apoptosis, which is a programmed process highly regulated by the BCL-2 family of proteins. This includes the antiapoptotic proteins (BCL-2, BCL-XL, MCL-1, BCLW, and BFL-1) and the proapoptotic proteins, which can be divided into two groups: the effectors (BAX, BAK, and BOK) and the BH3-only proteins (BIM, BAD, NOXA, PUMA, BID, BIK, HRK). Notably, the BCL-2 antiapoptotic proteins are often overexpressed in malignant cells. While this offers survival advantages to malignant cells and strengthens their drug resistance capacity, it also offers opportunities for novel targeted therapies that selectively kill such cells. This review provides a comprehensive overview of the extensive preclinical and clinical studies targeting BCL-2 proteins with various BCL-2 proteins inhibitors with emphasis on venetoclax as a single agent, as well as in combination with other therapeutic agents. This review also discusses recent advances, challenges focusing on drug resistance, and future perspectives for effective targeting the Bcl-2 family of proteins in cancer.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2382-2382
Author(s):  
Sanne H. Tonino ◽  
Jacoline M van Laar ◽  
Marinus H. J. van Oers ◽  
Jean Y.J. Wang ◽  
Eric Eldering ◽  
...  

Abstract Abstract 2382 Poster Board II-359 Although recent advances in treatment-strategies for chronic lymphocytic leukemia (CLL) have resulted in increased remission rates and response duration, the disease eventually relapses, which necessitates repeated cycles of therapy. Eventually most patients develop chemo-resistant disease which infers a very poor prognosis. The activity of purine-analogs and alkylating agents, the backbone of current treatment regimens, depends on functional p53 and chemo-resistance is highly associated with a dysfunctional p53-response. P53-independent sensitization of CLL cells to these compounds could represent a novel strategy to overcome chemo-resistance. Platinum-based compounds have been successfully applied in relapsed lymphoma and recently also in high-risk CLL. In various cancer-types, the activity of such compounds has been found to be p53-independent and in part mediated by p73. In this study we investigated the efficacy and mechanism of action of platinum-based compounds in chemo-refractory CLL. Neither cisplatinum nor oxaliplatin as a single agent induced cell death in clinically relevant doses. However, independent of p53-functional status, platinum-based compounds acted synergistically with fludarabine, which was found to be caspase-dependent. Combination-treatment resulted in strong upregulation of the pro-apoptotic BH3-only protein Noxa. We did not find evidence for a role of p73; however, the observed synergy was found to involve generation of reactive oxygen species (ROS). Co-treatment with ROS-scavengers completely abrogated Noxa-upregulation and cell-death upon combination treatment in p53-dysfunctional CLL. Noxa RNA-interference markedly decreased sensitivity to combination treatment, supporting a key role for Noxa as mediator between ROS signaling and apoptosis induction. In addition to these findings, we tested the effects of platinum-based compounds and fludarabine on drug-resistance resulting from CD40-ligand stimulation of CLL cells, which represents a model for CLL cells in the protective micro-environment of the secondary lymph node-tissue (Hallaert et al Blood 2008 112(13):5141). Combination treatment could overcome CD40-ligand induced chemo-resistance and was, at least in part, mediated by the generation of ROS and marked induction of expression of Noxa. Our data indicate that interference with the cellular redox-balance represents an interesting target to overcome drug resistance due to both p53-dysfunction as well as micro-environmental protective stimuli in CLL. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1378-1378
Author(s):  
Deborah M Stephens ◽  
Amy S. Ruppert ◽  
Kristie A. Blum ◽  
Jeffrey A. Jones ◽  
Joseph M. Flynn ◽  
...  

Abstract Abstract 1378 Although the most rapidly growing portion of the United States population is the elderly (Yancik R and Ries L, Semin Oncol 2004), they are consistently underrepresented in cancer clinical trials (Hutchins L et al, N Engl J Med 1999). The incidence of chronic lymphocytic leukemia (CLL) is markedly increased in older people, with a median age at diagnosis of 72 years (Ries L et al, SEER Clinical Statistics Review 2008). In contrast, an age range of between 58 and 66 years has been noted in patients (pts) enrolled in key trials to evaluate the first-line treatment for CLL (Eichhorst B et al, Leuk Lymphoma 2009). Both fludarabine and chemoimmunotherapy with rituximab have not demonstrated much promise in the older subset of patients. Developing new therapeutics that have clinical benefit and also demonstrate feasibility of administration to this patient population is of great interest. Flavopiridol, is a pan-cyclin-dependent kinase inhibitor, that has demonstrated significant clinical activity in relapsed and refractory CLL pts including those with del(17p13.1)(Christian B et al, Clin Lymphoma Myeloma 2009). We sought to determine the feasibility and impact of treating patients over the age of 70 with flavopiridol by reviewing outcomes of two clinical trials using single-agent flavopiridol in patients with relapsed or refractory CLL at our institution (Byrd J et al, Blood 2007; Lin T et al, J Clin Oncol 2009). Pts were divided into categories based on age [≥70 years old (n = 21) and <70 years old (n = 95)]. Of the 21 pts aged 70 or older, all but one (95%) presented with Rai Stage III/IV compared with 76% of the younger pts (<70 years old; P = 0.07). Older age was also associated with complex karyotype (63% vs. 37%; P = 0.04). No significant difference was observed in response rates, with 43% of older pts achieving response vs. 47% of younger pts (P = 0.81). The estimated median progression free survival (PFS) for both age groups was 0.8 years (P = 0.9). In multivariable analyses, there remained no significant differences in response rates or PFS when controlling for treatment schedule, Rai stage and presence of complex karyotype (P = 0.76 and P = 0.89, respectively). Although overall survival tended to be worse in the older pts compared with the younger pts (estimated medians of 2.1 and 2.4 years, respectively), following adjustment for other variables in a multivariable analysis, this difference was no longer significant (P = 0.54, hazard ratio = 1.20 [95% CI: 0.7 – 2.1]). With respect to toxicities, no significant difference in occurrence of tumor lysis syndrome (TLS) or cytokine release syndrome (CRS) was observed between the two age groups, TLS occurred in 48% of older pts and 45% of younger pts (P = 1.00), while CRS occurred in 33% of older pts and 36% of younger pts (P = 1.00). As for infection, only 29% of older pts experienced this toxicity compared to 62% of younger pts (P = 0.007). In multivariable pharmacokinetic (PK) analyses of a patient subset (n=56), there were no significant associations observed between PK parameters and age when controlling for age, bilirubin level, alanine transaminase level, platelet count, white blood cell count, BUN, and 14 distinct single nucleotide polymorphisms. These data demonstrate that flavopiridol administration to older CLL patients is both feasible, acceptably tolerated, and has similar efficacy as compared to younger patients. Future development of treatment approaches with both single-agent and combination strategies of flavopiridol should be considered for older CLL patients. Disclosures: Off Label Use: The efficacy of the cyclin dependent kinase inhibitor, flavopiridol is under investigation in CLL. Jones:GlaxoSmithKline: Consultancy, Membership on an entity's Board of Directors or advisory committees; Abbott Laboratories: Research Funding.


Gene ◽  
2006 ◽  
Vol 369 ◽  
pp. 134-141 ◽  
Author(s):  
Brant R. Burkhardt ◽  
Scott R. Greene ◽  
Peter White ◽  
Ryan K. Wong ◽  
John E. Brestelli ◽  
...  

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4209-4209
Author(s):  
Ann Maclaren ◽  
Amy Trauernicht ◽  
Lizbeth Nguyen ◽  
Karen McLachlan

Abstract Chronic lymphocytic leukemia (CLL) is a B cell malignancy characterized by the accumulation of mature phenotype leukemic B cells in blood, spleen and lymphoid tissues. While many patients respond initially to combination chemotherapy regimens, many become chemoresistant and all will ultimately relapse. Recently the addition of novel monoclonal antibody therapies such as rituximab and alemtuzumab to these treatment regimens has provided additional therapeutic benefit to chemorefractory CLL patients and prompted interest in the evaluation of additional B cell surface antigens as targets. Lumiliximab is a primatized monoclonal antibody directed against CD23, a glycoprotein expressed on the majority of CLL cells, and is currently under investigation in patients with relapsed CLL. It was previously demonstrated that the primary mechanism of action of lumiliximab in both CD23+ lymphoma B cells and CLL patient samples is sensitization to apoptotic cell death and that lumiliximab enhances apoptosis in vivo when combined with either fludarabine or rituximab (Pathan et al., Blood, 2008). In the present study we sought to determine whether lumiliximab could enhance the apoptotic activity of a range of CLL therapies which induce cell death via distinct apoptotic pathways. Our studies demonstrate that the addition of lumiliximab in combination with the alkylating agent chlorambucil resulted in a dose-dependent and significant increase in apoptosis of CD23+ lymphoma cells. Lumiliximab also resulted in statistically significantly enhanced apoptosis when combined with alemtuzumab as compared to either single agent alone in both CD23+/CD52+ lymphoma cells and CLL patient samples. Examination of the apoptotic pathways induced by these agents revealed that lumiliximab in combination resulted in more dramatic alterations in downstream effectors of apoptosis such as caspase 3, PARP, and DNA fragmentation. Further studies are ongoing to confirm these observations in xenograft models and to delineate the mechanistic basis of the enhanced apoptotic signaling. These data suggest that the use of lumiliximab in combination with current or emerging CLL therapies could be an effective strategy to augment tumor cell killing and may result in new and more effective treatment regimens for the eradication of CLL.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3900-3900
Author(s):  
Eric Eldering ◽  
Christian R Geest ◽  
Martin FM de Rooij ◽  
Nora Liu ◽  
Bogdan I Florea ◽  
...  

Abstract Abstract 3900 In the lymph node (LN) microenvironment, chronic lymphocytic leukemia (CLL) cells are protected from apoptosis by upregulation of anti-apoptotic proteins. In vitro, this can be mimicked via CD40-stimulation of CLL cells, which also provides resistance to various chemotherapeutics. Novel drugs that target kinases involved in B cell signalling, including the broad spectrum kinase inhibitor dasatinib, are currently in clinical development for CLL. We have shown previously that dasatinib prevents CD40-mediated anti-apoptotic changes in CLL (Hallaert et Blood 2008). However, the kinase(s) involved remain unidentified. Here, we coupled dasatinib to an affinity matrix and pulled down its targets from CD40-stimulated CLL cells. By mass-spectrometry and Western blotting, Abl and Btk were identified as dominant targets of dasatinib. Functional analysis revealed that CD40-mediated anti-apoptotic signals and drug-resistance could be overcome both by dasatinib and the Abl inhibitor imatinib, but not by the novel Btk inhibitor PCI-32765 (ibrutinib), whereas BCR- and chemokine-controlled adhesion could be abolished by dasatinib and ibrutinib, but not by imatinib. Thus, dasatinib combines two key aspects that are clinically relevant: inhibition of Abl overrides chemoprotective survival signals, whereas inhibition of Btk impairs integrin-mediated adhesion of CLL cells in the microenvironmental niche. This combined inhibition of Abl and Btk was put to an initial test in an open-label phase 2 trial of dasatinib combined with fludarabine in twenty refractory CLL patients. As might be expected based on the in vitro data, reductions in lymph node size were observed in most patients. A LN reduction of ≥20% provided a significant improved PFS (256 days) and OS (510 days) as compared to non-responders (80 days and 158 days respectively). Details of the clinical study will be presented separately. In conclusion, in agreement with in vitro molecular studies, dasatinib seems to have clinical efficacy in heavily pretreated refractory CLL patients. Combined, these data encourage further studies on a broad-spectrum kinase inhibitor like dasatinib in combination with other classes of drugs in relapsed and refractory CLL. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2236-2236 ◽  
Author(s):  
Dirkje W Hanekamp ◽  
Megan K Johnson ◽  
Scott Portwood ◽  
Joshua Acklin ◽  
Eunice S. Wang

Abstract Background: Acute myeloid leukemia (AML) is an aggressive hematological malignancy occurring primarily in older adults. Despite high remission rates following upfront therapy, the disease eventually recurs in most patients, and overall cure rates remain only 20-30%. Preclinical studies have recently demonstrated that the marrow microenvironment in acute leukemic hosts to be intrinsically hypoxic, with AML progression associated with further hypoxia. Moreover, human AML cells and primary AML colonies cultured under hypoxia are markedly less sensitive to cytarabine chemotherapy than normoxic cells. We hypothesized that AML cells may respond to hypoxic stress and mediate chemoresistance in part by invoking autophagy, a highly regulated catabolic process by which cells evade apoptosis by degrading damaged cellular components. To test our hypothesis, we investigated the effects of two known autophagy inhibitors (bafilomycin A1 (Baf) and chloroquine (CQ)) on the sensitivity of human AML cells to various therapeutic agents under differing oxygen levels. Methods: We treated HEL (FLT-3 wildtype) and MV4-11 (FLT-3 ITD mutant) AML cells with autophagy inhibitors (Baf and CQ) alone and in combination with a chemotherapeutic drug (cytarabine (AraC), doxorubicin (Dox), decitabine (Dac)) or a tyrosine kinase inhibitor (sorafenib, SFN) under normoxic (21% O2) or hypoxic (1% O2) conditions. Apoptosis /cell death and proliferation were measured by flow cytometry for Annexin-PI and MTT assays, respectively. Autophagy was assessed by flow cytometry using Cyto-ID Green Dye (Enzo Life Sciences), fluorescent microscropy for acridine orange dye accumulation, and western blot analysis. Results: Autophagy in human ALL and AML cell lines was significantly increased following 24-72 hours of hypoxia (1% O2) as compared with normoxia and was a relatively late response to prolonged low oxygen levels (> 24 hours). Treatment with cytotoxic agents (AraC or Dox) or hypomethylating agent (Dac) resulted in a dose-dependent increases in the number of autophagic vesicles in AML cells consistent with autophagy induction. Low-doses of Baf which selectively inhibits the vacuolar H+ ATPase to prevent lysosomal acidification, and CQ, which blocks lysosome-autophagosome fusion by raising the pH of lysosomes and endosomes, both resulted in buildup of autophagic vesicles by flow cytometry consistent with inhibition of autophagic flux in human AML cells. Combination treatment with an autophagy inhibitor (Baf, CQ) and cytotoxic chemotherapy (AraC, Dox) significantly enhanced apoptosis and cell death over single agent therapy. Treatment with Baf combined with hypomethylating therapy (Dac) synergistically improved the anti-leukemic effects as compared with monotherapy (CI 0.09-0.31)(see Figure). The addition of Baf also improved cell death induced by sorafenib (SFN) on FLT-3 ITD mutant human AML cells (MV4;11) (CI 0.36-0.9) (see Figure). Single agent Baf or CQ treatment resulted in significantly higher levels of apoptosis and cell death in AML cells under hypoxia. The anti-tumor activity of almost all combination regimens was consistently improved under hypoxic versus normoxic culture conditions. In vivo CQ treatment (25-50 mg/kg i.p. daily) in preclinical human AML xenograft models significantly inhibited systemic leukemia progression as a single agent. Further experiments investigating the in vivo effects of CQ combined with other chemotherapeutic agents in preclinical AML xenograft models are ongoing. Conclusions: Our data suggest that human AML cells preferentially induce autophagy to promote survival under chronic hypoxia and following cytotoxic, hypomethylating, and FLT-3 tyrosine kinase inhibitor therapy. Strategies targeting autophagy therefore may have the potential to improve therapeutic responses and overcome chemoresistance of AML cells within the hypoxic bone marrow microenvironment. Figure 1 Figure 1. Figure 2 Figure 2. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document