scholarly journals Aberrant B-cell homeostasis in chronic GVHD

Blood ◽  
2015 ◽  
Vol 125 (11) ◽  
pp. 1703-1707 ◽  
Author(s):  
Stefanie Sarantopoulos ◽  
Jerome Ritz

Abstract Recent studies have compelled further interest in the potential pathological role of B cells in chronic graft-versus-host disease (cGVHD). In patients with cGVHD, B cells are activated and primed for survival via B-cell activating factor and B-cell receptor–associated pathways. Understanding the signaling pathways that drive immune pathology in cGVHD will facilitate the development of new strategies to selectively target aberrantly activated B cells and restore normal B-cell homeostasis after allogeneic stem cell transplantation.

2021 ◽  
Vol 15 (5) ◽  
pp. 1582-1588
Author(s):  
S. Parkhideh ◽  
A. Hajifathali ◽  
E. Roshandel ◽  
Bentolhoda . ◽  
K. Dehaghi ◽  
...  

Graft-versus-host disease (GVHD) has posed many challenges in allogeneic HSCT. Thanks to the development of immunomodulating approaches, the mortality of acute GVHD (aGVHD) is drastically decreased. Nevertheless, chronic GVHD (cGVHD) is became the leading causes of death in patients who survived of aGVHD. Various studies have demonstrated the essential role of B cells in the development of cGVHD. B cells are directly involved in allogeneic reactions through a variety of mechanisms such as alloantibody production, triggering complement system, promoting antibody-dependent cellular cytotoxicity (ADCC), and cross-presentation of immune complexes. It has been known that the pathways involved in the B-cell homeostasis and survival, such as BAFF, BCR, and Notch2 signaling pathways are abnormal in cGVHD. Post-HSCT lymphopenia triggers the continuous release of BAFF, leading to abnormalities in B cell homeostasis, and increasing the survival of alloreactive/autoreactive B cells, leading to production of allo/auto-antibodies. On the other hand, reduction of regulatory B cells following HSCT, causes loss of T cell peripheral tolerance, leading to cGVHD incidence. Therefore, B cells deserve special consideration in allogeneic HSCT, and targeting alloreactive B cells might be a promising approach in cGVHD management. In this article, we discussed the role of B cells in pathophysiology of cGVHD. Keywords: Chronic graft-versus-host disease, Hematopoietic stem cell transplantation, B cell, BAFF


2018 ◽  
Author(s):  
J. Nechvatalova ◽  
S.J.W. Bartol ◽  
Z. Chovancova ◽  
L. Boon ◽  
M. Vlkova ◽  
...  

One Sentence SummaryHuman B cells with a genetic defect in IGHD develop normally in vivo, and do not have a competitive disadvantage to IgD-expressing B cells for developing into memory B cells.AbstractSurface immunoglobulin D (IgD) is co-expressed with IgM on naive mature B cells. Still, the role of surface IgD remains enigmatic even 50 years after its initial discovery. We here examined the in vivo role of surface IgD in human B-cell homeostasis and antibody responses in four individuals with heterozygous nonsense mutations in IGHD. All IGHD heterozygous individuals had normal numbers of B cells and serum immunoglobulins, and did not show signs of immunodeficiency or immune dysregulation. IgD+ and IgD– naive mature B cells were present in equal numbers and showed similar immunophenotypes, except for decreased expression of CD79b in the IgD– subset. Furthermore, both IgD+ and IgD– naive mature B cells had normal replication histories, similar capacities to differentiate into plasma cells upon in vitro stimulation, and Ig switched memory B cells showed similar levels of somatic hypermutations. Thus human B cells lacking IgD expression develop normally and generate immunological memory in vivo, suggesting that surface IgD might function more restricted in regulating of B-cell activation to specific antigenic structures.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. SCI-3-SCI-3
Author(s):  
Jerome Ritz

Abstract The clinical outcomes of allogeneic hematopoietic stem cell transplantation (HSCT) have steadily improved in the last two decades, but this remains a potentially toxic treatment approach and further improvements are needed. Both the benefits and potential toxicities of allogeneic HSCT derive from the replacement of the recipient’s immune system with donor cells. Donor T cells clearly play a critical role as the primary mediators of both graft-versus-leukemia (GVL) and graft-versus-host-disease (GVHD) after transplant. In this setting, donor T cells targeting tumor-specific antigens provide specific GVL activity and donor T cells targeting broadly expressed minor histocompatibility antigens (allo-antigens) lead to GVHD. Donor T cells targeting minor histocompatibility antigens with restricted expression on both normal and malignant hematopoietic cells in the recipient contribute to GVL as well as to the elimination of recipient hematopoietic cells and the establishment of full donor hematopoiesis. Although donor B cells do not contribute to acute GVHD, considerable evidence now suggests that donor B cells also play an important role in chronic GVHD (cGVHD). In male patients with female donors, Y chromosome encoded (HY) proteins represent a clinically relevant set of widely expressed minor histocompatibility antigens (mHA) that are frequently recognized by both donor T cells and B cells. HY antibodies typically develop four to eight months after HSCT and the development of HY antibodies is significantly associated with the development of cGVHD. Antibodies to autosomal mHA and tumor-associated antigens have also been detected. Development of antibodies to mHA has also been associated with a lower risk of relapse suggesting a role for donor B cells in GVL. Murine models have clearly demonstrated that donor B cell reconstitution after allogeneic HSCT contributes to the development of cGVHD. In one of these models, depletion of germinal center B cells prevents the development of bronchiolitis obliterans and other pathologic features of cGVHD. The homeostatic cytokine B-cell activating factor (BAFF) plays an important role in the regulation of donor B cell reconstitution. BAFF promotes B-cell proliferation, differentiation, and survival; but persistent, high levels of BAFF also support the survival of auto and allo-reactive B cells. Patients with cGVHD typically have delayed B-cell reconstitution and low numbers of circulating B cells associated with high levels of BAFF. A high BAFF to B-cell ratio promotes survival of antigen-activated B cells and prevents or delays the development of B-cell tolerance after transplant. The important role of B cells in cGVHD has been confirmed by numerous clinical reports demonstrating the efficacy of B-cell directed therapy with rituximab in patients with established cGVHD. Overall response rates of 40 to 70 percent have been reported, and clinical responses have been associated with reduced titers of allo-reactive antibodies and restoration of normal B-cell homeostasis, with increased numbers of circulating B cells and lower levels of BAFF after recovery from treatment. The efficacy of rituximab in the treatment of established cGVHD has led to recent studies evaluating rituximab as a prophylactic therapy for cGVHD. The results of single institution trials suggest that this may be an effective approach and further randomized multi-center trials evaluating the role of rituximab for cGVHD prophylaxis are currently in development. The efficacy of rituximab has also led to the evaluation of other B cell directed therapies in murine models. In particular, selective inhibitors of B cell signaling pathways have been developed and appear to be effective in preventing cGVHD in these model systems. Further evaluation of these new agents in the treatment and prevention of cGVHD is in development. Disclosures: Off Label Use: Rituximab - Use in treatment of chronic GVHD..


Blood ◽  
2009 ◽  
Vol 113 (16) ◽  
pp. 3865-3874 ◽  
Author(s):  
Stefanie Sarantopoulos ◽  
Kristen E. Stevenson ◽  
Haesook T. Kim ◽  
Corey S. Cutler ◽  
Nazmim S. Bhuiya ◽  
...  

Abstract Chronic graft-versus-host disease (cGVHD) causes significant morbidity and mortality in patients otherwise cured of malignancy after hematopoietic stem cell transplantation (HSCT). The presence of alloantibodies and high plasma B cell–activating factor (BAFF) levels in patients with cGVHD suggest that B cells play a role in disease pathogenesis. We performed detailed phenotypic and functional analyses of peripheral B cells in 82 patients after HSCT. Patients with cGVHD had significantly higher BAFF/B-cell ratios compared with patients without cGVHD or healthy donors. In cGVHD, increasing BAFF concentrations correlated with increased numbers of circulating pre–germinal center (GC) B cells and post-GC “plasmablast-like” cells, suggesting in vivo BAFF dependence of these 2 CD27+ B-cell subsets. Circulating CD27+ B cells in cGVHD comprised in vivo activated B cells capable of IgG production without requiring additional antigen stimulation. Serial studies revealed that patients who subsequently developed cGVHD had delayed reconstitution of naive B cells despite persistent BAFF elevation as well as proportional increase in CD27+ B cells in the first year after HSCT. These studies delineate specific abnormalities of B-cell homeostasis in patients with cGVHD and suggest that BAFF targeting agents may be useful in this disease.


Blood ◽  
2011 ◽  
Vol 117 (7) ◽  
pp. 2275-2283 ◽  
Author(s):  
Stefanie Sarantopoulos ◽  
Kristen E. Stevenson ◽  
Haesook T. Kim ◽  
Whitney S. Washel ◽  
Nazmim S. Bhuiya ◽  
...  

Abstract Investigation of the effects of rituximab (anti-CD20) on B-cell-activating factor of the tumor necrosis factor family (BAFF) and B cells would better define the significance of B-cell homeostasis in chronic graft-versus-host disease (cGVHD) pathophysiology. We studied 20 cGVHD patients at a median of 25 months after rituximab treatment when most patients had recovered total B-cell numbers. A total of 55% of patients had stable/improved cGVHD, and total B-cell numbers in these patients were significantly higher compared with rituximab-unresponsive patients. Although total B-cell number did not differ significantly between cGVHD groups before rituximab, there was a proportional increase in B-cell precursors in patients who later had stable/improved cGVHD. After rituximab, BAFF levels increased in all patients. Coincident with B-cell recovery in the stable/improved group, BAFF/B-cell ratios and CD27+ B-cell frequencies decreased significantly. The peripheral B-cell pool in stable/improved cGVHD patients was largely composed of naive IgD+ B cells. By contrast, rituximab-unresponsive cGVHD patients had persistent elevation of BAFF and a predominance of circulating B cells possessing an activated BAFF-RLoCD20Lo cell surface phenotype. Thus, naive B-cell reconstitution and decreased BAFF/B-cell ratios were associated with clinical response after rituximab in cGVHD. Our findings begin to delineate B-cell homeostatic mechanisms important for human immune tolerance.


2007 ◽  
Vol 204 (11) ◽  
pp. 2615-2627 ◽  
Author(s):  
Nadine Hövelmeyer ◽  
F. Thomas Wunderlich ◽  
Ramin Massoumi ◽  
Charlotte G. Jakobsen ◽  
Jian Song ◽  
...  

B cell homeostasis is regulated by multiple signaling processes, including nuclear factor-κB (NF-κB), BAFF-, and B cell receptor signaling. Conditional disruption of genes involved in these pathways has shed light on the mechanisms governing signaling from the cell surface to the nucleus. We describe a novel mouse strain that expresses solely and excessively a naturally occurring splice variant of CYLD (CYLDex7/8 mice), which is a deubiquitinating enzyme that is integral to NF-κB signaling. This shorter CYLD protein lacks the TRAF2 and NEMO binding sites present in full-length CYLD. A dramatic expansion of mature B lymphocyte populations in all peripheral lymphoid organs occurs in this strain. The B lymphocytes themselves exhibit prolonged survival and manifest a variety of signaling disarrangements that do not occur in mice with a complete deletion of CYLD. Although both the full-length and the mutant CYLD are able to interact with Bcl-3, a predominant nuclear accumulation of Bcl-3 occurs in the CYLD mutant B cells. More dramatic, however, is the accumulation of the NF-κB proteins p100 and RelB in CYLDex7/8 B cells, which, presumably in combination with nuclear Bcl-3, results in increased levels of Bcl-2 expression. These findings suggest that CYLD can both positively and negatively regulate signal transduction and homeostasis of B cells in vivo, depending on the expression of CYLD splice variants.


2006 ◽  
Vol 176 (4) ◽  
pp. 2122-2133 ◽  
Author(s):  
Michiko Shimoda ◽  
Tao Li ◽  
Jeanene P. S. Pihkala ◽  
Pandelakis A. Koni

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 498-498 ◽  
Author(s):  
Wei Jia ◽  
Jonathan C. Poe ◽  
Hsuan Su ◽  
Glenn K Matsushima ◽  
Jeffrey Rathmell ◽  
...  

Abstract Increased B cell-activating factor (BAFF) and aberrant B cell survival and activation are associated with chronic graft versus host disease (cGVHD) in patients. Whether excessive BAFF production has a pathologic role in the development of cGVHD after allogeneic hematopoietic stem cell transplantation (allo-HCT) remains unknown. Herein, we address this hypothesis by employing BAFF knockout (KO) and BAFF overexpressing (Tg) donor mice in the major MHC mismatched C57BL/6 (B6)-to-BALB/c cGVHD model (Wu et al J Immunol 2013;191:488), except we increased the T cell depleted bone marrow (TCDBM) dose to 1x107 per recipient to improve engraftment. BALB/c recipients receiving TCDBM plus 1x106 splenocytes (Sp) are the disease group, and those receiving TCDBM only are controls. After verifying cGVHD phenotypic manifestations (including longevity, weight loss, eye and lung findings), we examined whether cGVHD mice had the increased BAFF and B cell findings as occur in human cGVHD (Sarantopoulos et al, Blood 2009; 113: 3865). We observed that cGVHD mice had higher BAFF/B cell ratios compared to controls (Fig. 1A, n=10 each). We fully characterized the peripheral B cell compartment in these mice, and found that the relative composition of B cell subsets was significantly altered in diseased mice. CD93 cell surface expression has been used in mice to define B cells that emigrate from BM and circulate through secondary lymphoid organs. In cGVHD mice, we found a significant increase in the relative proportion of CD93+ B cells and a significant decrease in the proportion of CD93- B cells (Fig1B). Also, a significant increase in the frequency of cells positive for the germinal center and activation marker GL7 was found only within CD93- B cell subset of cGVHD mice (Fig 1C). When stimulated via BCR ex vivo, this GL7+ mature B cell subset had significantly increased Syk and BLNK activation, measured by phosphoflow (n=5, p=0.008). We next aimed to determine whether high BAFF alone or high BAFF and alloantigen together lead to altered B cell homeostasis and to the promotion of GL7+ BCR-activated B cells. C57BL/6 (B6) BAFF Tg TCDBM cells were used as donor to afford excessive and persistent BAFF levels after HCT in either syngeneic or BALB/c recipients. After B6 BAFF Tg TCDBM to BALB/c HCT, body weight decreased significantly. By contrast, B6 BAFF Tg TCDBM to B6 syngeneic HCT recipients remained healthy (Fig.1D, left panel,*p=0.004). Notably, the frequency of the CD93-GL7+ B cell subset was increased in BALB/c mice that received B6 BAFF Tg TCDBM only, compared to recipients of syngeneic BAFF Tg or WT TCDBM only (Fig.1D, right panel, p=0.008). Thus, both BAFF and alloantigen are required for B cell activation after HCT. Together, our data also suggest that GL7+ B cells identify aberrantly BCR-activated B cells in murine cGVHD, arising in the setting of BAFF-driven altered B cell homeostasis. While polymorphisms in either donor or recipient BAFF genes are associated with human GVHD (Clark et al Blood 2011; 118: 1140), the source of excess BAFF after allo-HCT remains unknown. We addressed whether pathologic BAFF was derived from donor or recipient hematopoietic cells using TCDBM from B6 BAFF KO mice vs WT as donor cells for HCT to BALB/c recipients. Consistent with the known requirement of recipient BAFF for recovery of the B cell compartment after syngeneic transplant (Gorelik et al JEM 2003; 198:937), recovery of a donor peripheral B cell pool was not significantly different between groups. Remarkably, plasma BAFF levels were also not different between BALB/c recipients of B6 BAFF KO TCDBM +Sp vs recipients of WT TCDBM +Sp, suggesting that radioresistant recipient cells produced BAFF in cGVHD. Chronic GVHD-associated weight loss was also not different between groups (Fig.1E, representative of 3 separate experiments). We found that BAFF production in the engrafted KO recipient BM was uniformly low. Thus, we have now determined that non-BM, radioresistant recipient cells are the principal source of soluble pathologic BAFF in murine cGVHD. Further characterization of BAFF-producing cells is underway in order to identify therapeutic targets. In summary, we have now demonstrated that recipient-derived BAFF has a mechanistic role in aberrant activation of B cells in cGVHD. Our findings will lead to the development of anti-BAFF and BCR targeting agents for patients. This work was supported the National Institutes of Health (NHLBI R01 HL 129061-01). Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document