b cell homeostasis
Recently Published Documents


TOTAL DOCUMENTS

141
(FIVE YEARS 20)

H-INDEX

40
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Vipul Shukla ◽  
Daniela Samaniego-Castruita ◽  
Zhen Dong ◽  
Edahí González-Avalos ◽  
Qingqing Yan ◽  
...  

2021 ◽  
Vol 118 (48) ◽  
pp. e2100195118
Author(s):  
Kelly A. McCorkell ◽  
Nipun Jayachandran ◽  
Michelle D. Cully ◽  
Jacquelyn Freund-Brown ◽  
Tiffany Weinkopff ◽  
...  

Global inactivation of IκB kinase (IKK)-α results in defective lymph node (LN) formation and B cell maturation, and loss of IKK-α–dependent noncanonical NF-κB signaling in stromal organizer and hematopoietic cells is thought to underlie these distinct defects. We previously demonstrated that this pathway is also activated in vascular endothelial cells (ECs). To determine the physiologic function of EC-intrinsic IKK-α, we crossed IkkαF/F mice with Tie2-cre or Cdh5-cre mice to ablate IKK-α in ECs. Notably, the compound defects of global IKK-α inactivation were recapitulated in IkkαTie2 and IkkαCdh5 mice, as both lacked all LNs and mature follicular and marginal zone B cell numbers were markedly reduced. However, as Tie2-cre and Cdh5-cre are expressed in all ECs, including blood forming hemogenic ECs, IKK-α was also absent in hematopoietic cells (HC). To determine if loss of HC-intrinsic IKK-α affected LN development, we generated IkkαVav mice lacking IKK-α in only the hematopoietic compartment. While mature B cell numbers were significantly reduced in IkkαVav mice, LN formation was intact. As lymphatic vessels also arise during development from blood ECs, we generated IkkαLyve1 mice lacking IKK-α in lymphatic ECs (LECs) to determine if IKK-α in lymphatic vessels impacts LN development. Strikingly, while mature B cell numbers were normal, LNs were completely absent in IkkαLyve1 mice. Thus, our findings reveal that IKK-α in distinct EC-derived compartments is uniquely required to promote B cell homeostasis and LN development, and we establish that LEC-intrinsic IKK-α is absolutely essential for LN formation.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3148
Author(s):  
Marta Cakala-Jakimowicz ◽  
Paulina Kolodziej-Wojnar ◽  
Monika Puzianowska-Kuznicka

Aging affects all tissues and organs. Aging of the immune system results in the severe disruption of its functions, leading to an increased susceptibility to infections, an increase in autoimmune disorders and cancer incidence, and a decreased response to vaccines. Lymph nodes are precisely organized structures of the peripheral lymphoid organs and are the key sites coordinating innate and long-term adaptive immune responses to external antigens and vaccines. They are also involved in immune tolerance. The aging of lymph nodes results in decreased cell transport to and within the nodes, a disturbance in the structure and organization of nodal zones, incorrect location of individual immune cell types and impaired intercellular interactions, as well as changes in the production of adequate amounts of chemokines and cytokines necessary for immune cell proliferation, survival and function, impaired naïve T- and B-cell homeostasis, and a diminished long-term humoral response. Understanding the causes of these stromal and lymphoid microenvironment changes in the lymph nodes that cause the aging-related dysfunction of the immune system can help to improve long-term immune responses and the effectiveness of vaccines in the elderly.


2021 ◽  
Vol 12 ◽  
Author(s):  
Adela Navrátilová ◽  
Lucie Andrés Cerezo ◽  
Hana Hulejová ◽  
Viktor Bečvář ◽  
Michal Tomčík ◽  
...  

BackgroundInterleukin 40 (IL-40) is a newly identified B cell-associated cytokine implicated in humoral immune responses and B cell homeostasis. As B cells play a pivotal role in autoimmunity, we investigated the function of IL-40 in rheumatoid arthritis (RA).MethodsIL-40 expression was determined in the synovial tissue from RA and osteoarthritis (OA) patients. IL-40 was analysed in the serum/synovial fluid of patients with RA (n=50), systemic lupus erythematosus (SLE, n=69), OA (n=44), and healthy controls (HC, n=50). We assessed the changes of IL-40 levels in RA patients following the B cell depletion by rituximab (n=29) or after the TNF inhibition by adalimumab (n=25). We examined the relationship between IL-40, disease activity, autoantibodies, cytokines, and NETosis markers. Effect of IL-40 on synovial fibroblasts was determined.ResultsIL-40 was overexpressed in RA synovial tissue, particularly by synovial lining and infiltrating immune cells. The levels of IL-40 were up-regulated in the synovial fluid of RA versus OA patients (p<0.0001). Similarly, IL-40 was increased in the serum of RA patients compared to HC, OA, or SLE (p<0.0001 for all) and decreased after 16 and 24 weeks (p<0.01 and p<0.01) following rituximab treatment. No significant effect of adalimumab on IL-40 was observed. IL-40 levels in RA patients correlated with rheumatoid factor-IgM and anti-cyclic citrullinated peptides (anti-CCP) in the serum (p<0.0001 and p<0.01), as well as in the synovial fluid (p<0.0001 and p<0.001). Synovial fluid IL-40 was also associated with disease activity score DAS28 (p<0.05), synovial fluid leukocyte count (p<0.01), neutrophil attractants IL-8 (p<0.01), MIP-1α (p<0.01), and markers of neutrophil extracellular traps externalization (NETosis) such as proteinase 3 (p<0.0001) and neutrophil elastase (p<0.0001). Synovial fibroblasts exposed to IL-40 increased the secretion of IL-8 (p<0.01), MCP-1 (p<0.05), and MMP-13 (p<0.01) compared to the unstimulated cells.ConclusionsWe show the up-regulation of IL-40 in RA and its decrease following B cell depleting therapy. The association of IL-40 with autoantibodies, chemokines, and markers of NETosis may imply its potential involvement in RA development. Moreover, IL-40 up-regulates the secretion of chemokines and MMP-13 in synovial fibroblasts, indicating its role in the regulation of inflammation and tissue destruction in RA.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0253912
Author(s):  
Yuko S. Niino ◽  
Ikuo Kawashima ◽  
Yoshinobu Iguchi ◽  
Hiroaki Kanda ◽  
Kiyoshi Ogura ◽  
...  

Protein kinase C-delta (PKCδ) has a caspase-3 recognition sequence in its structure, suggesting its involvement in apoptosis. In addition, PKCδ was recently reported to function as an anti-cancer factor. The generation of a PKCδ knockout mouse model indicated that PKCδ plays a role in B cell homeostasis. However, the Pkcrd gene, which is regulated through complex transcription, produces multiple proteins via alternative splicing. Since gene mutations can result in the loss of function of molecular species required for each tissue, in the present study, conditional PKCδ knockout mice lacking PKCδI, II, IV, V, VI, and VII were generated to enable tissue-specific deletion of PKCδ using a suitable Cre mouse. We generated PKCδ-null mice that lacked whole-body expression of PKCδ. PKCδ+/- parental mice gave birth to only 3.4% PKCδ-/- offsprings that deviated significantly from the expected Mendelian ratio (χ2(2) = 101.7, P < 0.001). Examination of mice on embryonic day 11.5 (E11.5) showed the proportion of PKCδ-/- mice implanted in the uterus in accordance with Mendelian rules; however, approximately 70% of the fetuses did not survive at E11.5. PKCδ-/- mice that survived until adulthood showed enlarged spleens, with some having cardiac and pulmonary abnormalities. Our findings suggest that the lack of PKCδ may have harmful effects on fetal development, and heart and lung functions after birth. Furthermore, our study provides a reference for future studies on PKCδ deficient mice that would elucidate the effects of the multiple protein variants in mice and decipher the roles of PKCδ in various diseases.


2021 ◽  
Vol 15 (5) ◽  
pp. 1582-1588
Author(s):  
S. Parkhideh ◽  
A. Hajifathali ◽  
E. Roshandel ◽  
Bentolhoda . ◽  
K. Dehaghi ◽  
...  

Graft-versus-host disease (GVHD) has posed many challenges in allogeneic HSCT. Thanks to the development of immunomodulating approaches, the mortality of acute GVHD (aGVHD) is drastically decreased. Nevertheless, chronic GVHD (cGVHD) is became the leading causes of death in patients who survived of aGVHD. Various studies have demonstrated the essential role of B cells in the development of cGVHD. B cells are directly involved in allogeneic reactions through a variety of mechanisms such as alloantibody production, triggering complement system, promoting antibody-dependent cellular cytotoxicity (ADCC), and cross-presentation of immune complexes. It has been known that the pathways involved in the B-cell homeostasis and survival, such as BAFF, BCR, and Notch2 signaling pathways are abnormal in cGVHD. Post-HSCT lymphopenia triggers the continuous release of BAFF, leading to abnormalities in B cell homeostasis, and increasing the survival of alloreactive/autoreactive B cells, leading to production of allo/auto-antibodies. On the other hand, reduction of regulatory B cells following HSCT, causes loss of T cell peripheral tolerance, leading to cGVHD incidence. Therefore, B cells deserve special consideration in allogeneic HSCT, and targeting alloreactive B cells might be a promising approach in cGVHD management. In this article, we discussed the role of B cells in pathophysiology of cGVHD. Keywords: Chronic graft-versus-host disease, Hematopoietic stem cell transplantation, B cell, BAFF


2021 ◽  
Vol 218 (5) ◽  
Author(s):  
Numana Bhat ◽  
Richard Virgen-Slane ◽  
Parham Ramezani-Rad ◽  
Charlotte R. Leung ◽  
Cindi Chen ◽  
...  

Regnase-1 is an emerging regulator of immune responses with essential roles in the posttranscriptional control of immune cell activation. Regnase-1 is expressed in B cells; however, its B cell–specific functions remain unknown. Here, we demonstrate that Regnase-1 prevents severe autoimmune pathology and show its essential role in maintaining B cell homeostasis. Using Cre driver mice for ablation of Regnase-1 at various stages of B cell development, we demonstrate that loss of Regnase-1 leads to aberrant B cell activation and differentiation, resulting in systemic autoimmunity and early morbidity. The basis of these findings was informed by gene expression data revealing a regulatory role for Regnase-1 in the suppression of a transcriptional program that promotes B cell activation, survival, and differentiation. Overall, our study shows that Regnase-1 exerts critical control of B cell activation, which is required for prevention of immunopathology.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wagdi Almishri ◽  
Rachelle P. Davis ◽  
Abdel-Aziz Shaheen ◽  
Mohammed O. Altonsy ◽  
Craig N. Jenne ◽  
...  

IntroductionB cells are important regulators of both adaptive and innate immunity. The normal liver contains significant numbers of B cells, and their numbers increase dramatically in immune-mediated liver diseases. Our previous observations suggest a hepatoprotective effect of the antidepressant mirtazapine in human and experimental immune-mediated liver disease. Therefore, we performed a series of experiments to determine the impact of mirtazapine treatment on hepatic B cell homeostasis, as reflected by B cell number, trafficking and phenotype using flow cytometry (FCM) and intravital microscopy (IVM) analysis. Mirtazapine treatment rapidly induced a significant reduction in total hepatic B cell numbers, paralleled by a compositional shift in the predominant hepatic B cell subtype from B2 to B1. This shift in hepatic B cells induced by mirtazapine treatment was associated with a striking increase in total hepatic levels of the chemokine CXCL10, and increased production of CXCL10 by hepatic macrophages and dendritic cells. Furthermore, mirtazapine treatment led to an upregulation of CXCR3, the cognate chemokine receptor for CXCL10, on hepatic B cells that remained in the liver post-mirtazapine. A significant role for CXCR3 in the hepatic retention of B cells post-mirtazapine was confirmed using CXCR3 receptor blockade. In addition, B cells remaining in the liver post-mirtazapine produced lower amounts of the proinflammatory Th1-like cytokines IFNγ, TNFα, and IL-6, and increased amounts of the Th2-like cytokine IL-4, after stimulation in vitro.ConclusionMirtazapine treatment rapidly alters hepatic B cell populations, enhancing hepatic retention of CXCR3-expressing innate-like B cells that generate a more anti-inflammatory cytokine profile. Mirtazapine-induced hepatic B cell shifts could potentially represent a novel therapeutic approach to immune-mediated liver diseases characterized by B cell driven pathology.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245431
Author(s):  
Caroline Rönnberg ◽  
Allan Lugaajju ◽  
Anna Nyman ◽  
Ulf Hammar ◽  
Matteo Bottai ◽  
...  

Malaria is a potentially life-threatening disease with approximately half of the world’s population at risk. Young children and pregnant women are hit hardest by the disease. B cells and antibodies are part of an adaptive immune response protecting individuals continuously exposed to the parasite. An infection with Plasmodium falciparum can cause dysregulation of B cell homeostasis, while antibodies are known to be key in controlling symptoms and parasitemia. BAFF is an instrumental cytokine for the development and maintenance of B cells. Pregnancy alters the immune status and renders previously clinically immune women at risk of severe malaria, potentially due to altered B cell responses associated with changes in BAFF levels. In this prospective study, we investigated the levels of BAFF in a malaria-endemic area in mothers and their infants from birth up to 9 months. We found that BAFF-levels are significantly higher in infants than in mothers. BAFF is highest in cord blood and then drops rapidly, but remains significantly higher in infants compared to mothers even at 9 months of age. We further correlated BAFF levels to P. falciparum-specific antibody levels and B cell frequencies and found a negative correlation between BAFF and both P. falciparum-specific and total proportions of IgG+ memory B cells, as well as CD27− memory B cells, indicating that exposure to both malaria and other diseases affect the development of B-cell memory and that BAFF plays a part in this. In conclusion, we have provided new information on how natural immunity against malaria is formed.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sharon Bajda ◽  
Arturo Blazquez-Navarro ◽  
Björn Samans ◽  
Patrizia Wehler ◽  
Sviatlana Kaliszczyk ◽  
...  

Abstract Epstein-Barr virus (EBV) reactivation can lead to serious complications in kidney transplant patients, including post-transplant lymphoproliferative disorder (PTLD). Here, we have assessed the impact of EBV on B cell homeostasis at cellular and humoral level. In a multicenter study monitoring 540 kidney transplant patients during the first post-transplant year, EBV reactivation was detected in 109 patients. Thirteen soluble factors and B cell counts were analyzed in an EBV+ sub-cohort (N = 54) before, at peak and after EBV clearance and compared to a control group (N = 50). The B cell activating factor (BAFF) was significantly elevated among EBV+ patients. No additional soluble factors were associated with EBV. Importantly, in vitro experiments confirmed the proliferative effect of BAFF on EBV-infected B cells, simultaneously promoting EBV production. In contrast, elevated levels of BAFF in EBV+ patients did not lead to B cell expansion in vivo. Moreover, diminished positive inter-correlations of soluble factors and alterations of the bi-directional interplay between B cell and soluble factors were observed in EBV+ patients at peak and after clearance. Our data suggest that such alterations may counteract the proliferative effect of BAFF, preventing B cell expansion. The role of these alterations in lymphoma development should be analyzed in future studies.


Sign in / Sign up

Export Citation Format

Share Document