scholarly journals KZF-L162R Mutation Affects Splenic Mature B Cell Development and Alters Expression of Aiolos Target Genes

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 668-668
Author(s):  
Gregory Lazarian ◽  
Shanye Yin ◽  
Alba Font-tello ◽  
Elisa Ten Hacken ◽  
Tomasz Sevastianik ◽  
...  

Abstract Large-scale DNA sequencing efforts in chronic lymphocytic leukemia (CLL) have identified a broad array of putative cancer drivers arising from somatic mutations in this disease, but functional understanding of the impact of these genetic events on CLL onset and progression remains to be elucidated. One such example is mutation in the IKZF3 gene, encoding the zinc finger protein AIOLOS, mutated in ~2% of CLLs and associated with fludarabine-refractory disease. AIOLOS is a lymphoid-restricted transcription factor and a chromatin remodeler that plays an essential role in B cell development and maturation. In CLL, the IKZF3 mutation, also reported in few cases of diffuse large B cell lymphoma and mantle cell lymphoma,targets a highly conserved hotspot (L162R, homologous to murine L161R) that is localized in the 2nd zinc finger of the DNA-binding domain, required for DNA sequence recognition. Given the localization of this hotspot mutation, we hypothesized that it impacts the function of AIOLOS to drive CLL. To characterize the effects of the IKZF3-L162R mutation, we generated a knock-in mouse line that conditionally expresses the point mutation in a B cell lineage context through crossing with Cd19-cre mice, generating mouse lines carrying Ikzf3-L161R as either a heterozygous mutation (Ikzf3-L161RHet), homozygous mutation (Ikzf3-L161RHomo) or wild-type Ikzf3(Ikzf3WT). Given the established role of Aiolos in lymphoid differentiation, we first asked how the mutation impacts B cell development. By flow cytometry, using established markers to detect marrow pro-B, pre-B, transitional and mature B cell populations, or peritoneal B1a and B1b cell populations, no differences in the proportion of cells were observed between Ikzf3WTor Ikzf3-L161RHet. In the spleen, however, the average proportion of marginal zone B cells (B220+CD23+CD21high) was markedly reduced in heterozygousmice compared to wild type mice (6 mice/group: 4.9% vs. 11.5%, p=0.006), while the average proportion of follicular B cells (B220+CD23+CD21-) was increased (76% vs. 63%; p=0.003). Immunohistochemical staining of spleen sections confirmed that the marginal zone area was significantly reduced in Ikzf3-L161RHetmice (p=0.01). In addition, we noted a higher proliferation rate of B cells from Ikzf3-L161RHetmice when stimulated with LPS and IL-4 for 3 days (p=0.01), suggesting that the mutation confers a survival advantage to B cells. Similar analyses in Ikzf3-L161RHomomice are ongoing. By immunofluorescence and immunoprecipitation, neither Aiolos binding with its partners CHD4, SIN3 or HDAC1, nor its cellular distribution were impacted by the mutation. Of note, the total protein level of Aiolos was increased in Ikzf3-L161RHetmice (9 mice/group; p<0.05). Since the mutation localizes to a DNA binding domain, we hypothesized that it modifies the ability of Aiolos to control expression of its target genes. We therefore performed CHIP-seq in Ikzf3WTsplenic B cells, and identified Aiolos-associated high confidence peaks (fold change (FC) enrichment compared to input > 20) corresponding to DNA binding sites in the promoters of genes such as Rps19, Ogg1, Dusp2, Phf23 or Brfp1 and confident peaks (FC>10) in the anti-apoptotic gene Mcl1 and in genes involved in BCR signaling (i.e.Syk, Pi3kr1, Nfkbid), suggesting that their expression is under the control of Aiolos. Comparison of the expression by qPCR of these 8 genes in splenic B cells from the 3 mouse lines revealed Dusp2, Mcl1, Syk, Nfkbid and Phf23 to be upregulated in Ikzf3-L161RHomoB cells (p<0.05) but not in Ikzf3-L161RHetB cells. These findings suggest that the mutation directly impacts the expression level of Aiolos target genes. The upregulation of Mcl1 expression is particularly relevant in the context of CLL as dysregulation of anti-apoptotic signaling is characteristic of the disease. In conclusion, these data show that Aiolos mutation affects B cell subpopulation ontogeny, inducing a disproportionate abundance of follicular B cells endowed with high proliferative capacity. The mutation impacts Aiolos transcription capacity leading to upregulation of genes belonging to pathways cardinal to CLL development, including BCR signaling and apoptosis. Ongoing studies focus combining RNA-seq and CHIP-seq in mutant B cells, with the aim of identifying the breadth of differential expressed genes and dysregulated cellular pathways in mutant B cells in an unbiased manner. Disclosures Wu: Neon Therapeutics: Equity Ownership.

2005 ◽  
Vol 201 (8) ◽  
pp. 1197-1203 ◽  
Author(s):  
Kazu Kikuchi ◽  
Anne Y. Lai ◽  
Chia-Lin Hsu ◽  
Motonari Kondo

Cytokine receptor signals have been suggested to stimulate cell differentiation during hemato/lymphopoiesis. Such action, however, has not been clearly demonstrated. Here, we show that adult B cell development in IL-7−/− and IL-7Rα2/− mice is arrested at the pre–pro-B cell stage due to insufficient expression of the B cell–specific transcription factor EBF and its target genes, which form a transcription factor network in determining B lineage specification. EBF expression is restored in IL-7−/− pre–pro-B cells upon IL-7 stimulation or in IL-7Rα−/− pre–pro-B cells by activation of STAT5, a major signaling molecule downstream of the IL-7R signaling pathway. Furthermore, enforced EBF expression partially rescues B cell development in IL-7Rα−/− mice. Thus, IL-7 receptor signaling is a participant in the formation of the transcription factor network during B lymphopoiesis by up-regulating EBF, allowing stage transition from the pre–pro-B to further maturational stages.


2019 ◽  
Vol 12 (604) ◽  
pp. eaaw5573 ◽  
Author(s):  
Jocelyn R. Farmer ◽  
Hugues Allard-Chamard ◽  
Na Sun ◽  
Maimuna Ahmad ◽  
Alice Bertocchi ◽  
...  

Transitional B cells must actively undergo selection for self-tolerance before maturing into their resting follicular B cell successors. We found that metabolic quiescence was acquired at the follicular B cell stage in both humans and mice. In follicular B cells, the expression of genes involved in ribosome biogenesis, aerobic respiration, and mammalian target of rapamycin complex 1 (mTORC1) signaling was reduced when compared to that in transitional B cells. Functional metabolism studies, profiling of whole-cell metabolites, and analysis of cell surface proteins in human B cells suggested that this transition was also associated with increased extracellular adenosine salvage. Follicular B cells increased the abundance of the cell surface ectonucleotidase CD73, which coincided with adenosine 5′-monophosphate–activated protein kinase (AMPK) activation. Differentiation to the follicular B cell stage in vitro correlated with surface acquisition of CD73 on human transitional B cells and was augmented with the AMPK agonist, AICAR. Last, individuals with gain-of-function PIK3CD (PI3Kδ) mutations and increased pS6 activation exhibited a near absence of circulating follicular B cells. Together, our data suggest that mTORC1 attenuation may be necessary for human follicular B cell development. These data identify a distinct metabolic switch during human B cell development at the transitional to follicular stages, which is characterized by an induction of extracellular adenosine salvage, AMPK activation, and the acquisition of metabolic quiescence.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1618-1618
Author(s):  
John K. Choi ◽  
Siyuan Song ◽  
Jonathan Cooperman ◽  
Danielle L. Letting ◽  
Gerd A. Blobel

Abstract The transcription factor E2A is required for very early B cell development. The exact mechanism by which E2A promotes B cell development is unclear and cannot be explained by the known E2A targets, components of the pre-B cell receptor and cyclin dependent kinase inhibitors, indicating additional pathways and targets remain to be identified. We had previously reported that E2A can promote precursor B cell expansion, promote G1 cell cycle progression, and induce the expressions of multiple G1 phase cyclins including cyclin D3, suggesting that E2A induction of these genes may contribute to early B cell development. To better understand the mechanism by which E2A induces these cyclins, we characterized the relationship between E2A and the cyclin D3 gene promoter. E2A transactivated a luciferase reporter plasmid containing the 1kb promoter of cyclin D3 that contains two consensus E2A binding sites (E-boxes); however, deletion of the E-boxes did not disrupt the transactivation by E2A. We hypothesized three possible mechanisms: 1) indirect activation of cyclin D3 via another transcription factor, 2) binding of E2A to cryptic non-E-boxes, or 3) recruitment of E2A to the promoter via interaction with other DNA binding factor. To test the first possibility, promoter occupancy was examined using the DamID approach. In this approach, a fusion protein consisting of E. coli DNA adenosine methyltransferase (DAM) and a transcription factor of interest is expressed at low levels, resulting in specific methylation of adenosine residues within 2–5 kb of the transcription factor target sites. A fusion construct composed of E2A and DAM (E47Dam), was subcloned in lentiviral vectors, and used to transduce precursor B cell lines. The methylated adenosine residues were detected using a sensitive ligation-mediated PCR (LM-PCR) assay that required only 1 ug of genomic DNA and can detect methylation even if only 3% of the cells express E47Dam; no methylated adenosines were detected in control cells, indicating that all methylated residues resulted from E47Dam. Specific adenosine methylation was identified at the IgH intronic enhancer, a known E2A target site, but not at the non-target sites, CD19, HPRT, and GAPDH promoters. Specific methylation was detected at the cyclin D3 promoter but not 10 kb down-stream, despite similar concentrations of E-boxes at both sites. Chromatin immunoprecipitation analysis confirmed the DamID findings and further localized the binding to within 1 kb of the two E-boxes in the cyclin D3 promoter. To distinguish between the two remaining mechanisms (cryptic non-E-boxes versus recruitment via other DNA binding factors), two point mutations were introduced into E47Dam that disrupted its DNA binding activity. The mutated E47Dam continued to methylate at the cyclin D3 promoter. We conclude that E2A can be recruited to the cyclin D3 promoter, independent of E-boxes or E2A DNA binding activity. Our findings raise the possibility that some direct E2A target genes may lack functional E-boxes. Furthermore, mutated E2A, lacking an E2A DNA binding domain, that is seen in 6% of pediatric ALLs may still activate a subset of E2A target genes. Finally, our application of lentiviral vectors and LM-PCR to the DamID approach should permit analysis of primary human precursor B cells, despite the limitations in cell number and transduction efficiency.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3231-3231
Author(s):  
Gabriela B. Iwanski ◽  
Nils H. Thoennissen ◽  
Joy Nakitandwe ◽  
Patricia Lin ◽  
Norihiko Kawamata ◽  
...  

Abstract Abstract 3231 B cell lineage acute lymphoblastic leukemia (ALL) is a common malignancy in childhood, and the pre-B cell receptor (pre-BCR) signalling pathway was previously demonstrated to function as a tumor suppressor. The transcription factor PAX5, a key regulator of B cell development, is frequently involved in chromosomal rearrangements of leukemic blasts. Using high resolution single nucleotide polymorphism (SNP) genomic microarray by us and other groups, several candidate partner genes fused to PAX5 have been detected in samples of pediatric ALL, such as TEL, FOXP1, AUTS2, and C20orf112. Recently, we studied the fusion gene PAX5/TEL and its role in leukemic evolution by Affymetrix HG-U133 plus 2.0 Array of the ALL cell line Nalm6 transfected with a PAX5/TEL construct. PAX5/TEL reduced the expression of PAX5 and its downstream target genes (e.g. CD79A, BACH2, CD19). Moreover, we demonstrated a dominant negative impact of the PAX5/TEL-fusion protein on the binding affinity of wild-type PAX5 to the promoter of CD79A (Iwanski et al., 2009 ASH Abstract No. 3455). To expand our findings, we analyzed the gene expression profile of pediatric ALL samples carrying PAX5/TEL (PAX5/TEL+, n=2) compared to samples with normal PAX5 (n=7) from a genomic ALL study. Samples with normal PAX5 were selected from among 95 B-ALL patients with normal PAX5 status, based on characteristics that most closely matched the two PAX5-TEL+ patients including cytogenetics and current risk stratification. Gene expression data were compiled using the Affymetrix HG-U133A Array, and a heatmap based on the Top 200 probes with the highest expression levels from both sample sets was generated (TIBCO Software Inc.). Notably, the downregulated genes included Bruton agammaglobulinemia tyrosine kinase (BTK; -2.8 fold, FDR < 0.2), an important regulator of pre-BCR signaling, Spleen tyrosine kinase (SYK, -2.3 fold, FDR < 0.2), and IGHM (-5,9 fold; FDR < 0.1), but also significantly up-regulated expression of genes involved in myeloid differentiation, namely Myeloperoxidase (MPO, +24.2 fold, FDR < 0.2), and CCAAT/enhancer binding protein alpha (CEBPA, +3.2 fold, FDR < 0.3), as well as the erythroid genes Aminolevulinate delta-dehydratase (ALAD, +12.2 fold, FDR < 0.2) and the Erythropoietin receptor (EPOR, +7.0, FDR < 0.3). Additionally, we performed a meta-analysis comparing deregulated genes detected in the Nalm6-microarray (PAX5/TEL-MIGR vs. empty vector) to the data from the human B-ALL samples (PAX5/TEL+ vs. normal PAX5). Overall, we identified a set of 35 overlapping genes (FDR < 0.3) that were deregulated in both data sets (21 downregulated, 14 up-regulated). Notably, 10 out of the 21 (47%) downregulated genes are known to be involved in B cell development and BCR signaling, some of them well-recognized as direct PAX5 target genes (e.g. CD79A, CD19, BACH2). Moreover, reporter gene assay with a luciferase reporter construct containing cDNA of the CD19 promoter with PAX5 binding sites (luc-CD19) was performed in Nalm6 cells. Since these cells already express a high level of endogenous PAX5, transcriptional activity of the luc-CD19 reporter plasmid was relatively high in the Nalm6 cells transfected with empty vector, as compared to 293T cells. In contrast, PAX5/TEL-transduced Nalm6 cells displayed a significantly reduced transcriptional activation of the reporter construct (P < 0.01). We also explored if mutation and/or deletion of PAX5 (mut/del PAX5) may have an impact on genes involved in B cell development and the pre-BCR/BCR pathway. Hence, expression files from human ALL samples with mut/del PAX5 (n=50) and B-ALL samples with normal PAX5 (n=95) were analyzed. Notably, only two genes that are known to be involved in B cell development and the pre-BCR pathway were significantly downregulated in samples with mut/del PAX5 compared to normal PAX5, namely CD72, a B cell specific repressor gene activated by PAX5 (-1.51 mean fold, FDR = 0.05), and immunoglobulin heavy constant delta (IGHD), a gene involved in pre-BCR signalling (-1.6 mean fold, FDR = 0.18). These findings suggest no strong influence of mut/del PAX5 on the expression of downstream genes involved in pre-BCR signaling. In conclusion, our results provide further insights into the dominant-negative role of PAX5/TEL and link this fusion gene with the pre-BCR pathway. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 783-783
Author(s):  
Chuanxin Huang ◽  
Ann Haberman ◽  
Ari M. Melnick

Abstract The transcriptional repressor Bcl6 is a master regulator of the germinal center (GC) reaction through directing naïve B cells and CD4+ T cells to differentiate into GC B cells and follicular T helper (TFH) cells respectively. Bcl6 mediates its action largely by recruitment of co-repressors through its N-terminal BTB domain and its middle second repression domain (RD2). The BTB domain repression function is critical for GC B cell survival and proliferation, but not important for TFH cell differentiation. However, the in vivobiological function of RD2 remains unknown. To explore the specific role of RD2 transcriptional repression in the GC reaction, we generated a knockin mouse model in which the endogenous Bcl6 locus encodes a mutant form of the protein that specifically disrupts RD2 mediated transcriptional repression. RD2 mutant mice were developmentally indistinguishable from wild-type mice and displayed normal B cell development prior to the GC phase. However, these mice failed to accumulate GCs after immunization with sheep blood cells and exhibited remarkably impaired production of high-affinity antibodies 21 days after T-cell dependent antigen immunization, indicative of severe deficiency of the GC reaction. Mixed bone marrow transplantation experiments showed that RD2 loss of function led to complete loss of GC B cells and partial impairment of TFH cell differentiation in cell-intrinsic manner. Intravital imaging analysis indicated that RD2-deficent antigen-engaged B cells migrate normally to the inter-follicular zone of lymph nodes and interacted normally with cognate T helper cells. To further understand the nature of the functional defect of RD2 mutant B-cells, hen egg lysosome (HEL)-specific RD2-deficient GFP B cells and wild type RFP B cells (with the ratio 1:1) were transferred together with non-fluorescent ovalbumin (OVA)-specific T cells into SMARTA hosts, which were then immunized at the footpad with HEL-OVA two days later. On day 5 after immunization, draining popliteal lymph nodes were harvested and subjected for immunofluorescence histology analysis. At this time point, wild-type RFP B cells have started to cluster into tiny GC, whereas RD2-deficient GFP B cells did not form GCs. Moreover, wild-type B cells in the follicular interior were predominantly Bcl6hi, a characteristic of pre-GC B cells, suggesting that they could serve as a source of GC B cells. By contrast, RD2-deficient GFP B cells were primarily extra-follicular, and infrequently observed in the follicle interior. Most importantly, these cells were typically Bcl6lo, demonstrating that RD2 repression function is essential for pre-GC B cell differentiation. BCL6 knockout mice display a lethal inflammatory phenotype due to aberrant T-cell and macrophage activation. In striking contrast, RD2-deficient mice experienced normal healthy lives with no inflammation, and had nearly normal inflammation cytokine production in B cells and macrophages as well as differentiation of Th1,Th2 and Th17 subtypes. Hence the RD2 repression domain is specifically involved in humoral immunity but has minimal participation in the anti-inflammatory functions of BCL6. Instead we observed that the BCL6 zing finger domain plays the key role in anti-inflammatory functions in macrophages, and through ChIP-competition assays show that this is mediated by directly competing with STATs for binding to chemokine genes. These results highlight an essential role of RD2-mediated transcriptional repression in pre-GC B cell development specifically at the early B-cell activation phase. This is different than mice with BCL6 BTB mutations where early activation is normal and the defect occurs later on in the proliferative phase of GCs. The data suggest a surprising development and cellular context-specific biochemical functions of Bcl6 governing each distinct phase of the humoral immune response and inflammation. Disclosures: No relevant conflicts of interest to declare.


2006 ◽  
Vol 26 (24) ◽  
pp. 9364-9376 ◽  
Author(s):  
Renren Wen ◽  
Yuhong Chen ◽  
Li Bai ◽  
Guoping Fu ◽  
James Schuman ◽  
...  

ABSTRACT Phospholipase Cγ2 (PLCγ2) is a critical signaling effector of the B-cell receptor (BCR). Here we show that PLCγ2 deficiency impedes early B-cell development, resulting in an increase of B220+ CD43+ BP-1+ CD24hi pre-BCR+ large pre-B cells. PLCγ2 deficiency impairs pre-BCR-mediated functions, leading to enhanced interleukin-7 (IL-7) signaling and elevated levels of RAGs in the selected large pre-B cells. Consequently, PLCγ2 deficiency renders large pre-B cells susceptible to transformation, resulting in dramatic acceleration of Myc-induced lymphomagenesis. PLCγ2 −/− Eμ-Myc transgenic mice mainly develop lymphomas of B220+ CD43+ BP-1+ CD24hi pre-BCR+ large pre-B-cell origin, which are uncommon in wild-type Eμ-Myc transgenics. Furthermore, lymphomas from PLCγ2 −/− Eμ-Myc transgenic mice exhibited a loss of p27Kip1 and often displayed alterations in Arf or p53. Thus, PLCγ2 plays an important role in pre-BCR-mediated early B-cell development, and its deficiency leads to markedly increased pools of the most at-risk large pre-B cells, which display hyperresponsiveness to IL-7 and express high levels of RAGs, making them prone to secondary mutations and Myc-induced malignancy.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1026-1026
Author(s):  
Marcin Lyszkiewicz ◽  
Daniel Kotlarz ◽  
Natalia Zietara ◽  
Gudrun Brandes ◽  
Jana Diestelhorst ◽  
...  

Abstract Human primary immunodeficiency caused by a point mutation in the 3' untranslated region of the endosomal adaptor protein p14 (also known as Lamtor2) resulted in severely impaired function of neutrophils, B cells, T cells and melanocytes. However, complexity of the phenotype and scarcity of human material preclude in-depth studies. Therefore, to gain insight into the role of p14 in B cell development and function, we generated loxP conditional knock-out mice. Using mb-1-Cre mice we demonstrated that loss of p14 at the preB1 stage lead to a complete block of B cell development, resulting in the absence of IgM-positive B cells. Further, to test the significance of p14 deficiency in peripheral organs, we took advantage of CD19-Cre mice, which have limited efficiency in deleting target genes in the bone marrow, but reach up to 95% efficiency in spleen. Thus, we could demonstrate that later in B cell development, p14 was essential for the generation and activation of mature B lymphocytes. While B1 cell development was maintained, splenic follicular B cells were massively reduced in the absence of p14. Furthermore, activation of B cell receptor (BCR) resulted in impaired intracellular signalling and proliferation of p14 deficient B cells. In particular, lack of p14 lead to delayed internalization of BCR and endosomal processing associated with impaired mobilization of Ca++ from intracellular stores as well as aberrant phosphorylation of BCR-associated kinases. In conclusion, our data revealed that p14 is a critical regulator of B cell development and function, which acts by modulating BCR signalling. Disclosures No relevant conflicts of interest to declare.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 429 ◽  
Author(s):  
Juan Carlos Yam-Puc ◽  
Lingling Zhang ◽  
Yang Zhang ◽  
Kai-Michael Toellner

B-cell development is characterized by a number of tightly regulated selection processes. Signals through the B-cell receptor (BCR) guide and are required for B-cell maturation, survival, and fate decision. Here, we review the role of the BCR during B-cell development, leading to the emergence of B1, marginal zone, and peripheral follicular B cells. Furthermore, we discuss BCR-derived signals on activated B cells that lead to germinal center and plasma cell differentiation.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 226-226 ◽  
Author(s):  
Min Ye ◽  
Olga Ermaermakova-Cirilli ◽  
Thomas Graf

Abstract Mice deficient of the ETS-family transcription factor PU.1 lack B cells as well as macrophages. While most macrophage specific genes are known to be regulated by high levels of PU.1, the reason for the defect in B cell formation is not known. Here we analyzed a mouse strain in which a floxed version of the PU.1 gene, surrounding exon 4 and 5, which encode the DNA, binding and PEST domains (developed by C. Somoza and D. Tenen), was excised by Cre mediated recombination. As expected, this strain lacks both B cells and macrophages and die at birth. Surprisingly, however, we were able to establish lymphoid cell lines from fetal livers of these mice (day 14 to day 18), which proliferated on S17 stromal cells supplemented with IL-7 and stem cell factor. These cells expressed the B lineage cell surface markers CD19, CD43, BP-1 and CD24, but not B220. They also expressed B cell transcription factors, EBF, E47, Pax5, and their target genes, Rag1, IL7R, λ5 and v-preB, as detected by RT-PCR, exhibited DJ and VDJ immunoglobulin heavy chain rearrangements, and expressed IgM after IL-7 withdrawal. We then tested the effect of PU.1 deletion in B cells in adult animals by crossing the floxed PU.1 strain with a CD19 Cre mouse line. The spleen and peripheral blood (but not bone marrow) of these mice contained B cells that were CD19+ IgMlow, IgDhigh but B220 negative and instead expressed CD43. Thus PU.1 is not essential for immunoglobulin production and late B cell development. Although PU.1−/− fetal liver cells can give rise to cells, resembling Pre-B in vitro, the process of B cell formation was delayed by almost 12 days, compared with wt fetal liver, and the efficiency was reduced approximately 25-fold. In addition, PU.1 deficient B cells demonstrated an impaired ability to engraft into the bone marrow, when injected into irradiated SCID mice. We have found that PU.1 deficient B progenitors showed reduced or undetectable levels of the SDF1 receptor CXCR4, a receptor that has been implicated in B cell homing. Taken together, our observations suggest that PU.1 plays two different roles during B cell development: for early B cell formation and for proper migration and engraftment, which might be mediated through regulation of CXCR4 expression.


Sign in / Sign up

Export Citation Format

Share Document