scholarly journals Outcome of Patients with Myelofibrosis after Ruxolitinib Failure: Role of Disease Status and Treatment Strategies in 214 Patients

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4277-4277 ◽  
Author(s):  
Francesca Palandri ◽  
Elena Maria Elli ◽  
Nicola Polverelli ◽  
Massimiliano Bonifacio ◽  
Giulia Benevolo ◽  
...  

Abstract Introduction . Ruxolitinib (RUX) is the only targeted therapy available for the treatment of myelofibrosis (MF)-related splenomegaly and symptoms. Significant clinical responses may be achieved in around 50% of patients (pts). However, half of responding pts lose the response over time. Aims . To report the outcome of a large cohort of MF pts after RUX failure, in terms of disease status, treatment strategies and survival. Methods . A clinical database was created in 23 European Hematology Centers including retrospective data of 537 MF pts treated with RUX from Jan 2011 to July 2018. Updated information at the date of July 15th 2018 was available in 442 pts who were included in the present analysis. Spleen and symptoms response (SR & SyR) to RUX were evaluated according to the 2013 IWG-MRT criteria. RUX-related toxicity and infections were graded according to the WHO scale. Overall (OS) was estimated from the date of RUX discontinuation to the date of death or last contact, using the Kaplan-Meyer method (log-rank test). Results . After a median follow-up of 30.5 months (1.7-84.3), 214 out of 442 evaluable (48.4%) pts had discontinued RUX. 43 (20.1%) died while on therapy because of: MF progression (34.9%), infections (25.6%), heart disease (16.3%), second neoplasia (7%), hemorrhages (7%), other (9.2%). The median follow-up after RUX discontinuation for the remaining 171 pts was 11.3 months (0.5-66.7). Causes of RUX discontinuation were: drug-related toxicity (28.6%), loss/lack of response (23.4%), MF progression (12.3%), acute leukemia (AL) (13.4%), allogeneic stem cell transplantation (ASCT) (11.1%), second solid neoplasia (4.1%), other unrelated causes (i.e. pts decision; 7.1%). After stopping RUX, 68 pts received 1 line of therapy, 21 received 2 lines and 9 received >2 treatments; 73 pts did not receive any therapy. Treatments received after RUX discontinuation, alone or in combination, included hydroxyurea (HU) (n. 61, 62.2%), ASCT (n. 20, 20.4%), second-generation JAK2 inhibitors (momelotinib/fedratinib/pacritinib) (n. 11, 11.2%), splenectomy (n. 7, 7.1%), azacytidine/decitabine (n. 5, 5.1%), chemotherapy (n. 4, 4.1%), investigational agents (imetelstat/PRM151: n. 4), danazole (n. 4), erythropoietin-stimulating agents (ESA) (n. 4). A total of 95 pts (55.6%) died after RUX discontinuation, because of: MF progression (30.5%), AL (25.4%), infections (14.7%), second neoplasia (9.5%), hemorrhages (4.2%), heart disease (4.2%), ASCT (4.2%), thrombosis (2.1%), other (5.2). Median survival time from RUX stop of the 171 evaluable pts was 22.6 mos (95% CI, 13.2-30.7). Among baseline features, survival after discontinuation was significantly influenced by the dynamic international prognostic score (DIPSS) category (p<0.001), transfusion dependency (p<0.001) and driver mutation status (with triple-negative pts having the worst survival compared to JAK2V617F and CALR-mutated pts, p=0.01). During therapy, 45 out of 153 (29.4%) and 123 out of 161 (76.4%) evaluable pts achieved a SR and a SyR at any time. Survival was not affected by the previous response to RUX at any time-point. Conversely, survival significantly differed according to the reason for stopping RUX, with pts discontinuing because of AL evolution/second solid neoplasia having the worst outcome (Figure 1a, p<0.001). In pts who discontinued RUX in chronic phase, the use of second generation TKIs and other investigational agents tended to prolong survival compared to the administration of conventional medical treatments (i.e. HU, danazole, ESA) (Figure 1b, p=0.07) Discussion . After RUX failure, very limited therapeutic options are available and the prognosis of MF pts is dismal, particularly for those pts starting RUX with advanced stage disease (i.e. high DIPSS category and transfusion dependency). Also, disease evolution into AL and occurrence of a second solid neoplasia significantly reduced life expectancy. In chronic phase pts, survival probability may be improved by the use of medical therapies that are still in the experimental phase. Novel investigational agents are needed. Disclosures Palandri: Novartis: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Abruzzese:BMS: Consultancy; Ariad: Consultancy; Novartis: Consultancy; Pfizer: Consultancy. Vitolo:Roche: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Gilead: Speakers Bureau; Takeda: Speakers Bureau; Sandoz: Speakers Bureau; Janssen: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Aversa:Pfizer: Honoraria, Membership on an entity's Board of Directors or advisory committees; Basilea: Honoraria, Membership on an entity's Board of Directors or advisory committees; Merck: Honoraria; Astellas: Honoraria; Gilead: Honoraria, Membership on an entity's Board of Directors or advisory committees. Cuneo:Gilead: Other: advisory board, Speakers Bureau; Roche: Other: advisory board, Speakers Bureau; Abbvie: Other: advisory board, Speakers Bureau; janssen: Other: advisory board, Speakers Bureau. Foà:ROCHE: Other: ADVISORY BOARD, Speakers Bureau; AMGEN: Other: ADVISORY BOARD; JANSSEN: Other: ADVISORY BOARD, Speakers Bureau; GILEAD: Speakers Bureau; NOVARTIS: Speakers Bureau; CELTRION: Other: ADVISORY BOARD; ABBVIE: Other: ADVISORY BOARD, Speakers Bureau; INCYTE: Other: ADVISORY BOARD; CELGENE: Other: ADVISORY BOARD, Speakers Bureau. Di Raimondo:Celgene: Honoraria; Takeda: Honoraria, Research Funding. Cavo:Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Bristol-Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees; GlaxoSmithKline: Honoraria, Membership on an entity's Board of Directors or advisory committees; AbbVie: Honoraria, Membership on an entity's Board of Directors or advisory committees; Adaptive Biotechnologies: Honoraria, Membership on an entity's Board of Directors or advisory committees; Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees. Breccia:Pfizer: Honoraria; Incyte: Honoraria; BMS: Honoraria; Novartis: Honoraria. Palumbo:Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1589-1589
Author(s):  
Fabian Frontzek ◽  
Marita Ziepert ◽  
Maike Nickelsen ◽  
Bettina Altmann ◽  
Bertram Glass ◽  
...  

Introduction: The R-MegaCHOEP trial showed that dose-escalation of conventional chemotherapy necessitating autologous stem cell transplantation (ASCT) does not confer a survival benefit for younger patients (pts) with high-risk aggressive B-cell lymphoma in the Rituximab era (Schmitz et al., Lancet Oncology 2012; 13, 1250-1259). To describe efficacy and toxicity over time and document the long-term risks of relapse and secondary malignancy we present the 10-year follow-up of this study. Methods: In the randomized, prospective phase 3 trial R-MegaCHOEP younger pts aged 18-60 years with newly diagnosed, high-risk (aaIPI 2-3) aggressive B-cell lymphoma were assigned to 8 cycles of CHOEP (cyclophosphamide, doxorubcine, vincristine, etoposide, prednisone) or 4 cycles of dose-escalated high-dose therapy (HDT) necessitating repetitive ASCT both combined with Rituximab. Both arms were stratified according to aaIPI, bulky disease, and center. Primary endpoint was event-free survival (EFS). All analyses were calculated for the intention-to-treat population. This follow-up report includes molecular data based on immunohistochemistry (IHC) and fluorescent in situ hybridization (FISH) for MYC (IHC: 31/92 positive [40-100%], FISH: 14/103 positive), BCL2 (IHC: 65/89 positive [50-100%], FISH: 23/111 positive) and BCL6 (IHC: 52/86 positive [30-100%], FISH: 34/110 positive) and data on cell of origin (COO) classification according to the Lymph2CX assay (GCB: 53/88; ABC: 24/88; unclassified: 11/88). Results: 130 pts had been assigned to R-CHOEP and 132 to R-MegaCHOEP. DLBCL was the most common lymphoma subtype (~80%). 73% of pts scored an aaIPI of 2 and 27% an aaIPI of 3. 60% of pts had an initial lymphoma bulk and in 40% more than 1 extranodal site was involved. After a median observation time of 111 months, EFS at 10 years was 57% (95% CI 47-67%) in the R-CHOEP vs. 51% in the R-MegaCHOEP arm (42-61%) (hazard ratio 1.3, 95% CI 0.9-1.8, p=0.228), overall survival (OS) after 10 years was 72% (63-81%) vs. 66% (57-76%) respectively (p=0.249). With regard to molecular characterization, we were unable to detect a significant benefit for HDT/ASCT in any subgroup analyzed. In total, 16% of pts (30 pts) relapsed after having achieved a complete remission (CR). 23% of all relapses (7 pts) showed an indolent histology (follicular lymphoma grade 1-3a) and 6 of these pts survived long-term. In contrast, of 23 pts (77%) relapsing with aggressive DLBCL or unknown histology 18 pts died due to lymphoma or related therapy. The majority of relapses occurred during the first 3 years after randomization (median time: 22 months) while after 5 years we detected relapses only in 5 pts (3% of all 190 pts prior CR). 11% of pts were initially progressive (28 pts) among whom 71% (20 pts) died rapidly due to lymphoma. Interestingly, the remaining 29% (8 pts) showed a long-term survival after salvage therapy (+/- ASCT); only 1 pt received allogeneic transplantation. The frequency of secondary malignancies was very similar in both treatment arms (9% vs. 8%) despite the very high dose of etoposide (total 4g/m2)in the R-MegaCHOEP arm. We observed 2 cases of AML and 1 case of MDS per arm. In total 70 pts (28%) have died: 30 pts due to lymphoma (12%), 22 pts therapy-related (11 pts due to salvage therapy) (9%), 8 pts of secondary neoplasia (3%), 5 pts due to concomitant disease (2%) and 5 pts for unknown reasons. Conclusions: This 10-year long-term follow-up of the R-MegaCHOEP trial confirms the very encouraging outcome of young high-risk pts following conventional chemotherapy with R-CHOEP. High-dose therapy did not improve outcome in any subgroup analysis including molecular high-risk groups. Relapse rate was generally low. Pts with aggressive relapse showed a very poor long-term outcome while pts with indolent histology at relapse survived long-term. Secondary malignancies occurred; however, they were rare with no excess leukemias/MDS following treatment with very high doses of etoposide and other cytotoxic agents. Supported by Deutsche Krebshilfe. Figure Disclosures Nickelsen: Roche Pharma AG: Membership on an entity's Board of Directors or advisory committees, Other: Travel Grants; Celgene: Membership on an entity's Board of Directors or advisory committees, Other: Travel Grant; Janssen: Membership on an entity's Board of Directors or advisory committees. Hänel:Amgen: Honoraria; Celgene: Other: advisory board; Novartis: Honoraria; Takeda: Other: advisory board; Roche: Honoraria. Truemper:Nordic Nanovector: Consultancy; Roche: Research Funding; Mundipharma: Research Funding; Janssen Oncology: Consultancy; Takeda: Consultancy, Research Funding; Seattle Genetics, Inc.: Research Funding. Held:Roche: Consultancy, Other: Travel support, Research Funding; Amgen: Research Funding; Acrotech: Research Funding; MSD: Consultancy; Bristol-Myers Squibb: Consultancy, Other: Travel support, Research Funding. Dreyling:Roche: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: scientific advisory board, Research Funding, Speakers Bureau; Bayer: Consultancy, Other: scientific advisory board, Speakers Bureau; Celgene: Consultancy, Other: scientific advisory board, Research Funding, Speakers Bureau; Mundipharma: Consultancy, Research Funding; Gilead: Consultancy, Other: scientific advisory board, Speakers Bureau; Novartis: Other: scientific advisory board; Sandoz: Other: scientific advisory board; Janssen: Consultancy, Other: scientific advisory board, Research Funding, Speakers Bureau; Acerta: Other: scientific advisory board. Viardot:Kite/Gilead: Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Pfizer: Honoraria; F. Hoffmann-La Roche Ltd: Honoraria, Membership on an entity's Board of Directors or advisory committees. Rosenwald:MorphoSys: Consultancy. Lenz:Gilead: Consultancy, Honoraria, Research Funding, Speakers Bureau; AstraZeneca: Consultancy, Honoraria, Research Funding; Agios: Research Funding; Celgene: Consultancy, Honoraria, Research Funding, Speakers Bureau; Bayer: Consultancy, Honoraria, Research Funding, Speakers Bureau; Janssen: Consultancy, Honoraria, Research Funding, Speakers Bureau; Roche: Employment, Honoraria, Research Funding, Speakers Bureau; BMS: Consultancy. Schmitz:Novartis: Honoraria; Gilead: Honoraria; Celgene: Equity Ownership; Riemser: Consultancy, Honoraria.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3770-3770 ◽  
Author(s):  
Philipp D. le Coutre ◽  
Francis J. Giles ◽  
Javier Pinilla-Ibarz ◽  
Richard A. Larson ◽  
Norbert Gattermann ◽  
...  

Abstract Abstract 3770 Background: Nilotinib is a selective and potent BCR-ABL TKI approved for the treatment of pts with newly diagnosed Ph+ CML-CP, and for pts with CML-CP or CML-AP resistant to or intolerant of imatinib. Here, we present the 48-mo follow-up data from the 2101 trial for pts with imatinib resistance or intolerance. Methods: Pts were treated with nilotinib 400 mg twice daily (BID). Key endpoints included PFS (defined as progression to AP/BC or discontinuation due to disease progression as assessed by investigator or death from any cause) and OS (includes deaths during treatment or follow-up after discontinuation). Results: 321 pts were enrolled (70% imatinib resistant; 30% imatinib intolerant with resistance). At baseline (BL), 36% of pts were in CHR. At the time of data cutoff, 224/321 pts (70%) discontinued nilotinib therapy (Table), and 31% of all pts had at least 48 mo of treatment. The median nilotinib dose intensity was 789 mg/day (range, 151–1110) and 62% of pts received ≥ 400 mg BID nilotinib as their last dose available. Pts with BL CHR had a significantly higher PFS rate at 48 mo vs pts without BL CHR (71% vs 49%, respectively; P =.001). Only 11 (3%) pts progressed to advanced disease (AP/BC) during study. Estimated 48-mo OS rate was 78% (95% CI 74%-83%). Among resistant pts, those without BL mutations (n = 92) had a significantly higher OS rate at 48 mo vs pts with sensitive mutations at BL (n = 78) (84% vs 74%, respectively, P =.029); however, there was no significant difference in OS among pts with sensitive and insensitive mutations (Y253H, E255K/V or F359C/V, n = 27) at BL (74% vs 71%, respectively, P =.804). No new safety signals were observed, and few additional AEs were reported since 24 mo follow-up (Table). Biochemical lab abnormalities were generally mild, transient, and easily managed; grade 3/4 lipase elevation (19%), hypophosphatemia (18%), and hyperglycemia (13%) were most common. Reports of any-grade pleural effusions remained low (1%), and no new cases were reported with longer follow-up. No new cases of QTcF >500 ms and 3 new cases of QTcF increases > 60 ms from BL were reported. Nine pts died during treatment or within 28 days of discontinuation: 8 deaths were previously reported and occurred in the first 24 mo of follow-up; 1 additional death due to lung neoplasm occurred between 24 and 48 mo (35 mo). Conclusions: With longer follow up, nilotinib continues to be effective and well tolerated in pts with Ph+ CML-CP resistant to or intolerant of imatinib therapy. Nilotinib prevented progression to AP/BC in the majority of pts on treatment and was associated with high OS rates. No cumulative toxicity was observed. Data demonstrating the higher rate of PFS in pts who entered the study with a BL CHR suggest that switching pts to nilotinib prior to hematologic failure on imatinib, and according to current treatment guidelines, may maximize the efficacy of nilotinib therapy. Disclosures: le Coutre: Novartis: Honoraria, Research Funding, Speakers Bureau; BMS: Honoraria. Giles:Novartis: Consultancy, Honoraria, Research Funding. Pinilla-Ibarz:Novartis: Research Funding, Speakers Bureau. Larson:Novartis: Consultancy, Honoraria, Research Funding. Gattermann:Novartis: Honoraria, Research Funding. Ottmann:Novartis: Consultancy; BMS: Consultancy, Research Funding. Hochhaus:Novartis: Consultancy, Honoraria, Research Funding; BMS: Consultancy, Honoraria, Research Funding; Ariad: Consultancy, Honoraria, Research Funding; Merck: Consultancy, Honoraria, Research Funding. Radich:BMS: Consultancy; Novartis: Consultancy, Research Funding. Saglio:Novartis: Consultancy, Speakers Bureau; BMS: Consultancy, Speakers Bureau; Pfizer: Consultancy. Hughes:Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Ariad: Honoraria, Membership on an entity's Board of Directors or advisory committees. Martinelli:Novartis: Consultancy, Honoraria; BMS: Consultancy, Honoraria; Pfizer: Consultancy. Kim:Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; BMS: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Pfizer: Membership on an entity's Board of Directors or advisory committees, Research Funding. Branford:Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Honoraria, Research Funding; Ariad: Research Funding. Müller:Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees. Shou:Novartis: Employment. Novick:Novartis: Employment, Equity Ownership. Fan:Novartis: Employment. Cortes:Novartis: Consultancy, Research Funding; BMS: Consultancy, Research Funding; Pfizer: Consultancy, Research Funding; Ariad: Consultancy, Research Funding. Baccarani:Novartis: Consultancy, Honoraria, Research Funding, Speakers Bureau; BMS: Consultancy, Honoraria, Speakers Bureau. Kantarjian:Novartis: Consultancy, Research Funding; BMS: Research Funding; Pfizer: Research Funding.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 801-801 ◽  
Author(s):  
Francisco Cervantes ◽  
Jean-Jacques Kiladjian ◽  
Dietger Niederwieser ◽  
Andres Sirulnik ◽  
Viktoriya Stalbovskaya ◽  
...  

Abstract Abstract 801 Background: Ruxolitinib is a potent JAK1 & 2 inhibitor that has demonstrated superiority over traditional therapies for the treatment of MF. In the two phase 3 COMFORT studies, ruxolitinib demonstrated rapid and durable reductions in splenomegaly and improved MF-related symptoms and quality of life. COMFORT-II is a randomized, open-label study evaluating ruxolitinib versus BAT in patients (pts) with MF. The primary and key secondary endpoints were both met: the proportion of pts achieving a response (defined as a ≥ 35% reduction in spleen volume) at wk 48 (ruxolitinib, 28.5%; BAT, 0%; P < .0001) and 24 (31.9% and 0%; P < .0001), respectively. The present analyses update the efficacy and safety findings of COMFORT-II (median follow-up, 112 wk). Methods: In COMFORT-II, 219 pts with intermediate-2 or high-risk MF and splenomegaly were randomized (2:1) to receive ruxolitinib (15 or 20 mg bid, based on baseline platelet count [100-200 × 109/L or > 200 × 109/L, respectively]) or BAT. Efficacy results are based on an intention-to-treat analysis; a loss of spleen response was defined as a > 25% increase in spleen volume over on-study nadir that is no longer a ≥ 35% reduction from baseline. Overall survival was estimated using the Kaplan-Meier method. Results: The median follow-up was 112 wk (ruxolitinib, 113; BAT, 108), and the median duration of exposure 83.3 wk (ruxolitinib, 111.4 [randomized and extension phases]; BAT, 45.1 [randomized treatment only]). Because the core study has completed, all pts have either entered the extension phase or discontinued from the study. The primary reasons for discontinuation were adverse events (AEs; ruxolitinib, 11.6%; BAT, 6.8%), consent withdrawal (4.1% and 12.3%), and disease progression (2.7% and 5.5%). Overall, 72.6% of pts (106/146) in the ruxolitinib arm and 61.6% (45/73) in the BAT arm entered the extension phase to receive ruxolitinib, and 55.5% (81/146) of those originally randomized to ruxolitinib remained on treatment at the time of this analysis. The primary reasons for discontinuation from the extension phase were progressive disease (8.2%), AEs (2.1%), and other (4.1%). Overall, 70 pts (48.3%) treated with ruxolitinib achieved a ≥ 35% reduction from baseline in spleen volume at any time during the study, and 97.1% of pts (132/136) with postbaseline assessments experienced a clinical benefit with some degree of reduction in spleen volume. Spleen reductions of ≥ 35% were sustained with continued ruxolitinib therapy (median duration not yet reached); the probabilities of maintaining the spleen response at wk 48 and 84 are 75% (95% CI, 61%-84%) and 58% (95% CI, 35%-76%), respectively (Figure). Since the last report (median 61.1 wk), an additional 9 and 12 deaths were reported in the ruxolitinib and BAT arms, respectively, resulting in a total of 20 (14%) and 16 (22%) deaths overall. Although there was no inferential statistical testing at this unplanned analysis, pts randomized to ruxolitinib showed longer survival than those randomized to BAT (HR = 0.52; 95% CI, 0.27–1.00). As expected, given the mechanism of action of ruxolitinib as a JAK1 & 2 inhibitor, the most common new or worsened grade 3/4 hematologic abnormalities during randomized treatment were anemia (ruxolitinib, 40.4%; BAT, 23.3%), lymphopenia (22.6%; 31.5%), and thrombocytopenia (9.6%; 9.6%). In the ruxolitinib arm, mean hemoglobin levels decreased over the first 12 wk of treatment and then recovered to levels similar to BAT from wk 24 onward; there was no difference in the mean monthly red blood cell transfusion rate among the ruxolitinib and BAT groups (0.834 vs 0.956 units, respectively). Nonhematologic AEs were primarily grade 1/2. Including the extension phase, there were no new nonhematologic AEs in the ruxolitinib group that were not observed previously (in ≥ 10% of pts), and only 1 pt had a new grade 3/4 AE (epistaxis). Conclusion: In COMFORT-II, ruxolitinib provided rapid and durable reductions in splenomegaly; this analysis demonstrates that these reductions are sustained over 2 years of treatment in the majority of pts. Ruxolitinib-treated pts showed longer survival than those receiving BAT, consistent with the survival advantage observed in previous (Verstovsek et al. NEJM. 2012) and current analyses of COMFORT-I, as well as with the comparison of pts of the phase 1/2 study with matched historical controls (Verstovsek et al. Blood. 2012). Disclosures: Cervantes: Sanofi-Aventis: Advisory Board, Advisory Board Other; Celgene: Advisory Board, Advisory Board Other; Pfizer: Advisory Board, Advisory Board Other; Teva Pharmaceuticals: Advisory Board, Advisory Board Other; Bristol-Myers Squibb: Speakers Bureau; Novartis: AdvisoryBoard Other, Speakers Bureau. Kiladjian:Shire: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; Incyte: Membership on an entity's Board of Directors or advisory committees; Celgene: Research Funding. Niederwieser:Novartis: Speakers Bureau. Sirulnik:Novartis: Employment, Equity Ownership. Stalbovskaya:Novartis: Employment, Equity Ownership. McQuity:Novartis: Employment, Equity Ownership. Hunter:Incyte: Employment. Levy:Incyte: Employment, stock options Other. Passamonti:Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees; Sanofi: Honoraria, Membership on an entity's Board of Directors or advisory committees; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees. Barbui:Novartis: Honoraria. Gisslinger:AOP Orphan Pharma AG: Consultancy, Speakers Bureau; Celgene: Consultancy, Research Funding, Speakers Bureau; Novartis: Consultancy, Research Funding, Speakers Bureau. Vannucchi:Novartis: Membership on an entity's Board of Directors or advisory committees. Knoops:Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees. Harrison:Shire: Honoraria, Research Funding; Sanofi: Honoraria; YM Bioscience: Consultancy, Honoraria; Novartis: Honoraria, Research Funding, Speakers Bureau.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1578-1578 ◽  
Author(s):  
Franck E. Nicolini ◽  
Gabriel Etienne ◽  
Viviane Dubruille ◽  
Lydia Roy ◽  
Françoise Huguet ◽  
...  

Abstract Background & aims In the Nilopeg trial (EudraCT 2010-019786-28), we have previously demonstrated that the combination of nilotinib (Tasigna® Novartis), a second generation inihibitor (TKI2), combined to pegylated interferon-alpha 2a (Peg-IFN, Pegasys®, Roche) in de novo chronic phase chronic myeloid leukemia (CP-CML) patients is able to induce high rates of molecular responses with an acceptable additional toxicity (F. E. Nicolini et al. Lancet Haematology 2015) within 24 months of follow-up. We report here the ≥4-year follow-up of such patients for toxicity and efficacy. Methods In a phase 2 study, newly diagnosed CP-CML patients were assigned to a priming strategy by Peg-IFN (± HU) for a month at 90 mg/wk, prior to a combination of nilotinib 300 mg BID + Peg-IFN 45 micro.g/wk for ≥ 1 year, maximum 2 years. After 2 years nilotinib was continued alone. The primary endpoint was the rate of confirmed molecular response 4.5 (MR4.5) by 1 year. Molecular assessments were centralised for all patients and expressed as BCR-ABLIS in % for 2 years and then performed in each center [all expressed in % on the international scale (IS)]. All data presented here are in intention-to-treat. Events were defined as death, progression to AP or BC, failure on nilotinib or nilotinib treatment discontinuation for any cause excluding treatment-free remission (TFR). Results Fourty-two patients were enrolled in this trial (one withdrawn its consent prior to treatment initiation), and the median follow-up is now 50.7 (47.8-52.8) months. Sokal and Euro scores were high for 12% and 2%, intermediate for 49% and 55% and low for 39% and 43% of the patients respectively. The median age at treatment initiation was 53 (23-85) years, 2 patients had a masked Philadelphia chromosome, 3 a variant form, and 1 additional chromosomal abnormalities, all patients had "major" BCR-ABL1 transcripts. The rates of Complete Cytogenetic Responses (CCyR) at "6", and "12" months of combination (i. e. at 5 and 11 months of TKI2) were 71%, and 100% respectively. Eighty seven percent of patients had a BCR-ABLIS ≤10% at M3 (i. e. after 2 months TKI). The rates of molecular responses respectively at 12, 24, 36 and 48 months were 76%, 78%, 83%, 73% for MMR, 51%, 58.5%, 66%, 58.5% for 4 log reduction (MR4), 17%, 34%, 34%, 44% for 4.5 log reduction (MR4.5), 12%, 32%, 29%, 41.5% for ≥5 log reduction (MR5), shown as cumulative incidence curves for MR4.5 in figure 1. The median doses of Peg-IFN delivered to the patients during the first year were 45 (0-45) micro.g/wk, and for nilotinib 600 (300-600) mg daily. Interestingly, logistic regression analysis adjusted on MR4.5 responses showed a significant relationship with the mean doses of Peg-IFN delivered to the patients at 12 months (p=0.003, OR = 1.09 [1.03-1.16]), 24 months (p=0.005, OR = 1.08 [1.02-1.14]) and 48 months (p=0.024, OR = 1.09 [1.01-1.17], but not with the mean doses of nilotinib [p=0.84, OR = 0.99 [0.99-1.01], p=0.087, OR = 1 [0.99-1.01], and p=0.88, OR = 1 [0.99-1.01] respectively. Eight patients (19.5%) were in TFR for a median of 6.8 (0.5-9.5) months after 2-year consecutive MR4.5, and none lost MMR yet at last follow-up. One patient died of progression (unmutated myeloid blast crisis at M6, who relapsed after unrelated allogeneic stem cell transplantation). There was no additional grade 3-4 hematologic or biochemical toxicities occurring after 24 months. At last follow-up 10 patients switched for another TKI (2 for dasatinib, 5 for imatinib, and 3 for imatinib followed by dasatinib), for unsufficient cytogenetic or molecular response (2 patients) or for toxicity (7 patients). Overall, 4 patients presented some cardio-vascular events 3 coronary stenoses, one brain stroke). Conclusion Despite additional initial toxicities Peg-IFN priming strategy, followed by the combination of nilotinib and Peg-IFN during the first year induces very high rates of durable deep molecular responses (MR4 and MR4.5) at later time-points, offering TFR for number of patients. To date, no emerging severe adverse events occurred. However, to confirm these promising results, a randomised phase III study testing nilotinib versus nilotinib + Peg-IFN is absolutely warranted and in progress. Figure 1. Cumulative incidence of MR4.5 Figure 1. Cumulative incidence of MR4.5 Disclosures Nicolini: Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Bristol-Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Ariad Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Etienne:ARIAD: Consultancy, Honoraria, Speakers Bureau; Novartis: Consultancy, Honoraria, Other: Congress Travel/Accomodations, Research Funding, Speakers Bureau; BMS: Consultancy, Honoraria, Speakers Bureau. Roy:BMS: Consultancy, Research Funding; Novartis: Consultancy, Research Funding. Huguet:Novartis: Consultancy, Research Funding; BMS: Consultancy, Speakers Bureau; ARIAD: Consultancy, Speakers Bureau; PFIZER: Consultancy, Speakers Bureau. Legros:ARIAD: Speakers Bureau; BMS: Speakers Bureau; Novartis: Research Funding, Speakers Bureau. Giraudier:Novartis: Speakers Bureau. Coiteux:BMS: Speakers Bureau; ARIAD: Speakers Bureau; Novartis: Speakers Bureau. Guerci-Bresler:ARIAD: Speakers Bureau; BMS: Speakers Bureau; Novartis: Speakers Bureau; PFIZER: Speakers Bureau. Rea:Pfizer: Honoraria; Ariad: Honoraria; Novartis: Honoraria; Bristol-Myers Squibb: Honoraria. Amé:BMS: Speakers Bureau; Novartis: Speakers Bureau. Cony-Makhoul:Novartis: Consultancy, Honoraria, Speakers Bureau; BMS: Consultancy, Honoraria, Speakers Bureau. Gardembas:Novartis: Speakers Bureau. Hermet:Novartis: Speakers Bureau; BMS: Speakers Bureau. Rousselot:Pfizer: Consultancy; BMS: Consultancy, Speakers Bureau; Novartis: Speakers Bureau. Mahon:ARIAD: Consultancy; Bristol-Myers Squibb: Consultancy, Honoraria; Pfizer: Consultancy; Novartis: Consultancy, Honoraria.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 348-348 ◽  
Author(s):  
Nathan H Fowler ◽  
Loretta J. Nastoupil ◽  
Collin Chin ◽  
Paolo Strati ◽  
Fredrick B. Hagemeister ◽  
...  

Background: Patients with advanced indolent non-Hodgkin lymphoma (iNHL) can develop chemoresistance and most relapse following standard therapy. Although multiple treatment options exist, most are associated with short remission or intolerable side effects. Lenalidomide activates NK cells ± T cells and leads to in vivo expansion of immune effector cells in NHL models. The combination of rituximab and lenalidomide (R2) in relapsed iNHL is highly active and was recently approved. Obinutuzumab is a glycosylated type II anti-CD20 molecule with enhanced affinity for the FcγRIIIa receptors leading to improved ADCC. The primary objective of this phase I/II study was to determine the maximum tolerated dose (MTD), safety, and efficacy of lenalidomide and obinutuzumab in relapsed indolent lymphoma. Methods: Patients with relapsed small lymphocytic lymphoma (SLL), marginal zone, and follicular lymphoma (gr 1-3a) were eligible. Patients enrolled in three predefined dose cohorts of lenalidomide (10mg,15mg, 20mg) given on days 2-22 of a 28 day cycle. Obinutuzumab was given at a fixed dose (1000mg) IV on days 1,8,15 and 22 of cycle 1 and day 1 of subsequent cycles for 6 cycles. The combination was given for up to 12 cycles in responding pts. Antihistamines were given in pts who developed rash. Prophylactic growth factor was not allowed. In the absence of progression or toxicity, single agent obinutuzumab was continued every 2 months for maximum of 30 months on study. Traditional 3+3 dose escalation was used with dose limiting toxicities (DLT) assessed during cycle 1. Once the MTD was established, 60 additional patients were enrolled in the phase II portion of the study. Adverse events were graded using CTCAE version 4.03. Results: 66 pts were enrolled between May 2014 until March 2019, and all are eligible for safety and response assessment. No DLTs were observed in dose escalation, and 60 pts were enrolled in the phase II portion of the study at 20mg of lenalidomide daily. Histologies included follicular lymphoma (FL) n=57, marginal zone n=4, SLL n=5. The median age was 64 (36-81), with 2 (1-5) median prior lines of treatment. For 53% of pts, the combination represented the third or greater line of treatment. The overall response (OR) rate for all pts was 98% with 72% attaining a complete response (CR). Eighteen pts (27%) had a partial response, and stable disease was noted in 1 (2%). At a median follow up of 17 months, 14 pts have progressed, with an estimated 24mo progression-free survival (PFS) of 73% (57-83% 95% CI). The estimated 24 mo PFS for ≥ third line pts was 63%. Twenty five pts (38%) remain on treatment and 95% remain alive at last follow up. The most common grade ≥ 3 non-hematologic toxicities included fatigue (5 pts), rash (4 pts), and cough (3 pts). Grade ≥3 neutropenia and thrombocytopenia occurred in 11 (17%) and 7 (11%) pts respectively. Two pts stopped treatment due to adverse events, including 1 transient bradycardia and 1 grade 3 fatigue. Conclusion: The combination of 20 mg of lenalidomide and 1000mg obinutuzumab is safe and effective in patients with relapsed indolent lymphoma. Adverse events appeared similar to our prior experience with lenalidomide and rituximab and were generally well tolerated. Overall response rates were high, with many pts achieving prolonged remission, including pts who had relapsed after 2 or more lines of prior therapy. Validation studies in the frontline and salvage setting are ongoing. Disclosures Fowler: Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Roche: Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis Pharmaceuticals Corporation: Consultancy; TG Therapeutics: Membership on an entity's Board of Directors or advisory committees, Research Funding; ABBVIE: Membership on an entity's Board of Directors or advisory committees, Research Funding. Nastoupil:TG Therapeutics: Honoraria, Research Funding; Novartis: Honoraria; Janssen: Honoraria, Research Funding; Spectrum: Honoraria; Gilead: Honoraria; Genentech, Inc.: Honoraria, Research Funding; Bayer: Honoraria; Celgene: Honoraria, Research Funding. Westin:Novartis: Other: Advisory Board, Research Funding; Celgene: Other: Advisory Board, Research Funding; Juno: Other: Advisory Board; Janssen: Other: Advisory Board, Research Funding; Kite: Other: Advisory Board, Research Funding; Unum: Research Funding; MorphoSys: Other: Advisory Board; Genentech: Other: Advisory Board, Research Funding; Curis: Other: Advisory Board, Research Funding; 47 Inc: Research Funding. Neelapu:Precision Biosciences: Consultancy; Merck: Consultancy, Research Funding; Cellectis: Research Funding; Novartis: Consultancy; BMS: Research Funding; Karus: Research Funding; Acerta: Research Funding; Poseida: Research Funding; Kite, a Gilead Company: Consultancy, Research Funding; Incyte: Consultancy; Celgene: Consultancy, Research Funding; Unum Therapeutics: Consultancy, Research Funding; Allogene: Consultancy; Pfizer: Consultancy; Cell Medica: Consultancy.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2552-2552
Author(s):  
Franck E. Nicolini ◽  
Vincent Alcazer ◽  
Stephanie Dulucq ◽  
Sandrine Hayette ◽  
Jean-Michel Cayuela ◽  
...  

Abstract Aims: The absolute number of chronic phase CML patients (pts) reaching the treatment-free remission (TFR) criteria has been substantially increased by the use of second-generation TKI (TKI2), initiated since diagnosis, comparing to Imatinib first-line. However, the relative rate of unsuccessful TFR (i. e. pts loosing their MMR after TKI2 cessation) still remains around 50% at 2 years and beyond, whatever the TKI2 was. The aim of this study is to analyse the rate of successful TFR in pts receiving Nilotinib (Nilo) or Dasatinib (Dasa) first-line obtaining the appropriate criteria. Methods: Observational retrospective study in 3 reference centers of the French group of CML lead between 2010 and 2021. Eligible pts were CP CML pts initiating either Nilo 300 mg BID or Dasa 100 mg daily since diagnosis, until cessation for sustained MR4.5 (i.e. ≥2 years on ≥4 datapoints). Data were retrospectively collected according to the national regulations with pts' information. All pts were assessed and followed according to ELN recommendations 2009, 2013 and 2020 along treatment and to the recommendations from the French group of CML (D. Rea et al., Cancer 2018) for TFR. In this regard, the TKI2 was resumed in case of loss of MMR. All BCR-ABL1 assessments were performed in the 3 reference laboratories, standardised and expressed in % (IS) with ≥32,000 copies of ABL1 as control. All patients were harbouring major BCR-ABL1 transcripts. The primary endpoint was the survival without loss of MMR after TKI2 cessation. The secondary endpoints were the kinetics of MMR loss, and the identification of factors influencing MMR loss. Results: Seventy-two pts were reported (47 Nilo, 25 Dasa) with 57% females with a median age at diagnosis of 48 (36.75-61.25) years. The median follow-up since diagnosis was 9.26 (3.75-13.75) years (8.8 for Nilo and 9.47 for Dasa p=ns) and after TKI2 cessation 3.94 (0.7-8.8) years (3.92 for Nilo and 3.90 for Dasa p=ns). Sokal scores were 42% Low, 41% Intermediate, 17% High in Nilo and 39% L, 25% I and 35% H in Dasa pts (p=ns). ELTS scores were 50% L, 22% I, 9.5% H (18.5% Uk) in Nilo and 46.5% L, 28.5% I and 3.5% H (21.5% Uk) in Dasa pts (p=0.95). Five (9%) pts harboured ACA at diagnosis in the Nilo group and 2 (7%) in the Dasa group (p=1.00). The median time from TKI2 initiation to sustained MR4.5 was 19 (3.12-36) months in the Nilo group and 16 (6.3-39) months in the Dasa group (p=0.644). The duration of sustained MR4.5 until cessation was 3.04 (1.5-9.3) years for Nilo and 2.65 (1.11-7.95) for Dasa (p=0.96). The median dosing of Nilo was 600 (300-800) mg daily and 80 (20-100) mg at TKI2 cessation. None of these patients switched to another TKI during the follow-up. TKI2 cessation occurred after 60.5 (43-74.5) months in the Nilo group and 68 (39-90) months in the Dasa group (p=0.581). Thirty-seven pts out of 47 (79%) were BCR-ABL1 undetectable at Nilo cessation 18/25 (72%) at Dasa cessation (p=0.60). At M3 after discontinuation, 58% of pts remained undetectable after Nilo cessation and 30.4% after Dasa cessation (p=0.05).The median survival of pts without loss of MMR was not reached in the Nilo group, and was 14 (4.73-NR) months in the Dasa group, (p=0.042) as analysed by the KM method (Figure 1.). Two patients died (1 Nilo, 1 Dasa) from competing events (solid tumours) after unsuccessful TFR. Twenty-eight pts (14 Dasa, 14 Nilo) restarted their TKI2 after MMR loss and all regained ≥ MMR after 3 months of Dasa at a median dose of 75 (40-100) mg daily and all except one (who regained MMR at M12) after resumption of Nilo at a median dose of 350 (300-600) mg daily. Univariate analysis identified pts with H+I Sokal (as compared to low) as an unfavourable factor for successful TKI2 cessation [HR=0.35 (0.15-0.83), p=0.017] and type of TKI2 (Nilo as reference vs Dasa) was discriminant [HR=2.1 (1.01-4.35), p=0.047]. Multivariate analysis identified the type of TKI2 as a significant factor impacting on TFR outcome [HR 2.11 (0.97-4.55], p=0.05]. Conclusions: As it is likely that no prospective head-to-head comparison will be performed in this setting, on this limited series of pts, we conclude that the outcome of TFR seems to be different according to the TKI2 used since diagnosis, suggesting the impact of distinct biological variables modified by the type of TKI2 on the long run (such as immunological system, BM micro-environment, others) on TFR outcome. Figure 1 Figure 1. Disclosures Nicolini: Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: travel, accommodations, expenses, Research Funding; Kartos Therapeutics: Consultancy, Membership on an entity's Board of Directors or advisory committees; Sun Pharma Ltd.: Consultancy, Membership on an entity's Board of Directors or advisory committees; BMS: Honoraria; Incyte Biosciences: Honoraria, Other: travel, accommodations, expenses, Research Funding, Speakers Bureau. Etienne: Incyte: Consultancy, Speakers Bureau; Novartis: Consultancy, Speakers Bureau. Rea: Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Incyte: Honoraria, Membership on an entity's Board of Directors or advisory committees; Pfizer: Honoraria, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4013-4013 ◽  
Author(s):  
Mark Blaine Geyer ◽  
Ellen K. Ritchie ◽  
Arati V. Rao ◽  
M. Isabella Cazacu ◽  
Shreya Vemuri ◽  
...  

Abstract Introduction: Among adolescents and young adults with (w/) acute lymphoblastic leukemia (ALL) or lymphoblastic lymphoma (LBL), treatment using a pediatric (vs. adult) regimen appears to achieve superior event-free (EFS) and overall survival (OS); this observation has driven increased interest in adapting pediatric regimens for middle-aged adults w/ ALL/LBL. However, greater risk of toxicities associated w/ asparaginase complicates administration of pediatric-inspired regimens in adults. We therefore designed a pediatric-inspired chemotherapy regimen w/ doses of pegaspargase (PEG) rationally synchronized to limit overlapping toxicities w/ other chemotherapeutic agents. Methods: We conducted a phase II multi-center trial in adults ages 18-60 w/ newly-diagnosed Philadelphia chromosome-negative (Ph-) ALL/LBL (NCT01920737). Pts w/ Ph+ ALL or Burkitt-type ALL were ineligible. The treatment regimen consisted of 2-phase induction (I-1, I-2), followed by consolidation w/ 2 courses of alternating high-dose methotrexate-based intensification and reinduction, followed by 3 years of maintenance (Figure 1). PEG 2000 IU/m2 was administered in each of the 6 intensive courses of induction/consolidation at intervals of ≥4 weeks. Minimal residual disease (MRD) was assessed in bone marrow (BM) by multiparameter flow cytometry (FACS) on day (d) 15 of I1 and following I-1 and I-2. Any detectable MRD (even <0.01% of BM WBCs) was considered positive. Toxicities were assessed by CTCAE v4.0. Results: 39 pts were enrolled (30M, 9F), w/ B-ALL (n=28), T-ALL (n=7), B-LBL (n=3), and T-LBL (n=5). Median age at start of treatment was 38.3 years (range 20.2-60.4), w/ 18 pts age 40-60. Grade 3-4 toxicities associated w/ PEG are summarized in Table 1. Grade 3-4 hyperbilirubinemia was observed post-PEG in I-1 in 9 pts, but only recurred thereafter in 1/8 pts resuming PEG. Pts completing consolidation on protocol (n=16) received median of 6 doses of PEG (range, 2-6). Four pts developed hypersensitivity to PEG and subsequently received Erwinia asparaginase. PEG was discontinued in 4 additional pts due to hepatotoxicity (n=2), pancreatitis (n=1), and physician preference (n=1). Of pts w/ available response assessments, 35/36 (97%) achieved morphologic complete response (CR) or CR w/ incomplete hematologic recovery (CRi) following I-1 (n=34) or I-2 (n=1). Both pts not achieving CR/CRi after I-I had early T-precursor ALL; one of these pts was withdrawn from study, and the other (w/ M2 marrow after I-1) achieved CR after I-2. Of the pts w/ ALL (excluding LBL) w/ available BM MRD assessments, 11/28 (39%) achieved undetectable MRD by FACS following I-1; 18/22 (82%) achieved undetectable MRD by FACS following I-2. Of the pts w/ LBL w/ available BM MRD assessments, 7/7 (100%) achieved or maintained undetectable MRD by FACS following I-1 and I-2. Ten pts underwent allogeneic hematopoietic cell transplantation (alloHCT) in CR1. Seven pts experienced relapse at median 15.2 months from start of treatment (range, 5.4-30.4), of whom 6 subsequently underwent 1st (n=5) or 2nd (n=1) alloHCT. Of the 11 pts w/ ALL w/ undetectable MRD following I-1, only one has relapsed. Five patients have died, including 2 pts in CR1 (from sepsis and multi-organ system failure), and 3 pts in relapse. At median follow-up of 22.3 months among surviving pts (range, 1.0-48.1), median EFS and OS (Figure 2A&B) have not been reached (EFS not censored at alloHCT). 3-year EFS was 62.1% (95% CI: 38.4-78.9%) and 3-year OS was 80.0% (95% CI: 57.5-91.4%). Conclusions: PEG can be incorporated into pediatric-inspired chemotherapy regimens w/ manageable toxicity for appropriately selected adults up to age 60 w/ Ph- ALL/LBL. While PEG-related AEs are common, few pts require permanent discontinuation of asparaginase. Grade 3-4 hyperbilirubinemia was common, particularly post-I-1, but recurred infrequently when PEG was continued. Two induction courses resulted in a high rate of MRD negativity post-I-2 and translated to a low rate of relapse. Though further follow-up is required, 3-year EFS is encouraging. Data regarding asparaginase enzyme activity and silent inactivation w/ neutralizing anti-PEG antibody will be presented. Ongoing and future studies will additionally investigate whether incorporating novel therapies (e.g. blinatumomab, nelarabine) into frontline consolidation therapy may reduce risk of relapse among adults receiving PEG-containing regimens. Disclosures Geyer: Dava Oncology: Honoraria. Ritchie:Celgene: Consultancy, Other: Travel, Accommodations, Expenses, Speakers Bureau; NS Pharma: Research Funding; Incyte: Consultancy, Speakers Bureau; ARIAD Pharmaceuticals: Speakers Bureau; Astellas Pharma: Research Funding; Bristol-Myers Squibb: Research Funding; Novartis: Consultancy, Other: Travel, Accommodations, Expenses, Research Funding, Speakers Bureau; Pfizer: Consultancy, Research Funding. Rao:Kite, a Gilead Company: Employment. Tallman:Daiichi-Sankyo: Other: Advisory board; AROG: Research Funding; Cellerant: Research Funding; AbbVie: Research Funding; BioSight: Other: Advisory board; Orsenix: Other: Advisory board; ADC Therapeutics: Research Funding. Douer:Shire: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Gilead Sciences: Consultancy; Amgen: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Jazz Pharmaceuticals: Consultancy; Pfizer: Honoraria; Spectrum: Consultancy. Park:Kite Pharma: Consultancy; Juno Therapeutics: Consultancy, Research Funding; Amgen: Consultancy, Membership on an entity's Board of Directors or advisory committees; AstraZeneca: Consultancy; Novartis: Consultancy; Shire: Consultancy; Pfizer: Consultancy; Adaptive Biotechnologies: Consultancy.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 414-414
Author(s):  
Michael M. Boyiadzis ◽  
Marcos J.G. de Lima ◽  
Mei-Jie Zhang ◽  
Karen Chen ◽  
Christopher S. Hourigan ◽  
...  

Abstract Leukemia relapse and treatment related mortality (TRM) remain major obstacles for successful allogeneic hematopoietic cell transplantation (allo-HCT). The number of induction cycles using intensive chemotherapy at AML diagnosis to achieve complete remission (CR) and the number of consolidation cycles and disease status at the time of allo-HCT for patients with acute myeloid leukemia (AML) may each affect TRM and relapse rates. We investigated the impact of the number of induction/consolidation cycles and disease status on the success of allo-HCT in 3113 AML patients reported to the Center for International Blood and Marrow Transplant Research (CIBMTR) (2008-2019). They received allo-HCT in first CR or with persistent leukemia (primary induction failure-PIF) receiving myeloablative (MA) or reduced-intensity (RIC) conditioning. 1473 AML patients (median age, 47 years) in CR received MAC; 862 (58%) achieved CR after 1 cycle of intensive induction chemotherapy and 74% of these had no evidence of measurable residual disease (MRD). 454 (31%) patients required 2 cycles to CR (72 % MRD negative) and 157 (11%) patients (69% MRD negative) after ≥ 3 cycles. The overall survival (OS), relapse and TRM by induction cycle number is shown in Table 1. Multivariate analysis demonstrated that CR after 1 cycle led to higher OS vs. 2 cycles (HR 1.32 95%CI 1.11-1.56, p&lt; 0.01) or ≥ 3 cycles (HR 1.47 95%CI 1.16-1.87, p&lt; 0.01), while OS after 2 cycles or ≥ 3 cycles were similar (HR 1.2 95%CI 0.87-1.4, p=0.38). Higher TRM was observed in patients receiving 2 or ≥ 3 cycles vs. only 1 induction cycles (HR 1.34 95%CI 1.05-1.72, p&lt; 0.02). Relapse risk was greater in those needing ≥ 3 cycles to achieve CR. Consolidation therapy after CR was associated with improved OS vs. no consolidation therapy (HR 1.57 95%CI 1.24-1.99, p&lt; 0.01). The need for ≥2 induction cycles plus consolidation therapy was associated with higher TRM (HR 1.34 95%CI 1.05-1.72, p&lt; 0.02). 1162 AML patients (median age, 63 years) in CR received allo-HCT after RIC; 714 (61%) achieved CR after 1 cycle of induction chemotherapy (72% MRD negative); 310 (27%) patients after 2 cycles (67% MRD negative) and 138 (12%) patients (58% MRD negative) after ≥ 3 cycles (Table 1). Multivariate analysis demonstrated that the number of induction cycles did not affect the OS or TRM. Relapse risk was greater in patients requiring ≥2 cycles to achieve CR. The use of consolidation therapy did not affect OS or TRM. MRD status at the time of allo-HCT did not have a significant impact on OS, TRM and relapse rates after either MA or RIC conditioning. 478 AML patients received allo-HCT after PIF (328 patients with MAC [median age, 51 years], 150 patients RIC [median age, 61 years], Table 1). After MAC, OS and relapse were significantly worse in PIF patients compared to any CR patients (p&lt;0.01). After RIC, relapse was significantly more frequent in PIF patients vs. CR patients after 1 or more induction cycles (p&lt;0.01). TRM was similar for PIF vs CR patients after MAC or RIC allo-HCT. These data demonstrate that among patients eligible for allo-HCT, the need for only one induction cycle to achieve CR, particularly when combined with consolidation therapy is associated with better outcomes after MA conditioning. Achieving CR prior to allo-HCT needing one or more induction cycles is associated with lower relapse rates and improved OS compared to patients with PIF that receive allo-HCT. Figure 1 Figure 1. Disclosures de Lima: BMS: Membership on an entity's Board of Directors or advisory committees; Incyte: Membership on an entity's Board of Directors or advisory committees; Miltenyi Biotec: Research Funding; Pfizer: Membership on an entity's Board of Directors or advisory committees. Hourigan: Govt. COI: Other. Litzow: Omeros: Other: Advisory Board; Pluristem: Research Funding; Jazz: Other: Advisory Board; AbbVie: Research Funding; Amgen: Research Funding; Actinium: Research Funding; Astellas: Research Funding; Biosight: Other: Data monitoring committee. Saber: Govt. COI: Other. Weisdorf: Incyte: Research Funding; Fate Therapeutics: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1533-1533 ◽  
Author(s):  
Paolo Strati ◽  
Ralph J. Johnson ◽  
Sheryl G Forbes ◽  
Loretta J. Nastoupil ◽  
Felipe Samaniego ◽  
...  

Introduction. The combination of rituximab and lenalidomide (R2) is active in patients with untreated indolent lymphoma. Recent randomized trials (RELEVANCE) have demonstrated similar efficacy when compared to standard chemo-immunotherapy backbones. Long term follow up of patients receiving R2 as well as predictors of long term remission and survival have yet to be published. Methods. We prospectively evaluated patients with low grade advanced stage FL who received R2 as initial treatment at our institution between 07/2008 and 10/2014. Lenalidomide was given at 20 mg (day 1-21, in a 28 day cycle) for 6 cycles with rituximab monthly. Lenalidomide starting dose was 10 mg if baseline creatinine clearance was &lt; 60 mL/min. Patients with an objective response continued with 10-20 mg of lenalidomide with rituximab for up to 12 more cycles. Response was evaluated according to 2014 Lugano criteria. Results. One-hundred and one patients were included in the analysis, baseline characteristics are shown in the Table. Median number of provided cycles was 7 (range, 1-20). Median dose of lenalidomide was 20 mg (range, 5-20 mg), and 29 (29%) patients required a dose reduction. Fifty-six (55%) patients experienced grade 3-4 treatment-related toxicities, the most common (&gt; 5%) being neutropenia (39%), skin rash (20%), myalgia (16%) and fatigue (16%). Seven (7%) patients discontinued treatment before completion, after a median time of 4 months (range, 1-10 months): 4 because of toxicity (arterial thrombosis in 2, respiratory failure in 1, and skin rash in 1), and 3 because of progression. Ninety-eight patients were evaluable for response, while 3 patients discontinued treatment because of toxicity before first response assessment. Overall response rate was 98%, CR rate 90% (both achieved after a median of 6 months [range, 3-22 months]), and CR rate at 30 months (CR30) was 80%. Only female sex associated with a higher CR rate (96% vs 83%, p=0.05), while no baseline characteristic associated with CR30 rate. After a median follow-up of 88 months (95% confidence interval, 84-92 months), 31 (31%) patients progressed and/or died, 7-year progression-free survival (PFS) was 63%, and 13% of patients had a PFS &lt; 24 months (PFS24). Failure to achieve CR was the only factor associated with significantly decreased PFS (10 months vs not reached, p&lt;0.001) and higher likelihood of PFS24 (46% vs 5%, p&lt;0.001). No association was observed with baseline characteristics, including FLIPI and FLIPI-2 score. At most recent follow-up, transformation was reported in 3 (3%) patients, after 30, 32 and 42 months, respectively. Two (2%) patients have died, 1 of unrelated comorbid health conditions, 1 of progressive disease, and 7-year overall survival was 98%. Second cancers (excluding transformation) were diagnosed in 8 (8%) patients, after a median of 55 months (range, 3-105 months). These included: breast adenocarcinoma (2), melanoma (2), pancreatic adenocarcinoma (1), esophageal adenocarcinoma (1), and therapy-related acute myeloid leukemia. Discussion. Long-term follow-up show very favorable outcomes for patients with advanced stage FL receiving R2 as initial treatment, independent of traditional prognostic factors relevant to patients treated with chemoimmunotherapy, including FLIPI and FLIPI-2 score. Combination strategies, aimed at increasing depth of response to R2, may further improve outcomes observed with this regimen. Table. Disclosures Nastoupil: Bayer: Honoraria; Genentech, Inc.: Honoraria, Research Funding; Celgene: Honoraria, Research Funding; Gilead: Honoraria; Janssen: Honoraria, Research Funding; Novartis: Honoraria; TG Therapeutics: Honoraria, Research Funding; Spectrum: Honoraria. Westin:Janssen: Other: Advisory Board, Research Funding; Unum: Research Funding; Curis: Other: Advisory Board, Research Funding; 47 Inc: Research Funding; Genentech: Other: Advisory Board, Research Funding; Juno: Other: Advisory Board; Celgene: Other: Advisory Board, Research Funding; MorphoSys: Other: Advisory Board; Novartis: Other: Advisory Board, Research Funding; Kite: Other: Advisory Board, Research Funding. Wang:AstraZeneca: Consultancy, Honoraria, Research Funding, Speakers Bureau; MoreHealth: Consultancy, Equity Ownership; Acerta Pharma: Consultancy, Research Funding; BioInvent: Consultancy, Research Funding; Pharmacyclics: Honoraria, Research Funding; Janssen: Consultancy, Honoraria, Research Funding, Speakers Bureau; Juno Therapeutics: Research Funding; Dava Oncology: Honoraria; Celgene: Honoraria, Research Funding; Aviara: Research Funding; Kite Pharma: Consultancy, Research Funding; Guidepoint Global: Consultancy; VelosBio: Research Funding; Loxo Oncology: Research Funding. Neelapu:Pfizer: Consultancy; Precision Biosciences: Consultancy; Merck: Consultancy, Research Funding; Celgene: Consultancy, Research Funding; Allogene: Consultancy; Novartis: Consultancy; BMS: Research Funding; Kite, a Gilead Company: Consultancy, Research Funding; Cellectis: Research Funding; Acerta: Research Funding; Karus: Research Funding; Poseida: Research Funding; Incyte: Consultancy; Cell Medica: Consultancy; Unum Therapeutics: Consultancy, Research Funding. Fowler:Roche: Membership on an entity's Board of Directors or advisory committees, Research Funding; ABBVIE: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis Pharmaceuticals Corporation: Consultancy; TG Therapeutics: Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding. OffLabel Disclosure: lenalidomide and rituximab are not yet FDA-approved as frontline treatment for patients with FL


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 556-556
Author(s):  
Uday R. Popat ◽  
Roland Bassett ◽  
Peter F. Thall ◽  
Amin M. Alousi ◽  
Gheath Alatrash ◽  
...  

Abstract Background: Myeloablative conditioning can be given safely to older patients by administering busulfan over a longer period (fractionated busulfan regimen) than the standard four-day regimen. (Popat, et al Lancet Haematology 2018). This longer conditioning regimen duration allows the addition of oral targeted agents like sorafenib, which may be synergistic with conditioning chemotherapy and thus further improve disease control. Therefore, we added sorafenib to fludarabine and fractionated busulfan regimen (f-bu) in a phase 1 dose-finding trial studying 4 different doses of sorafenib with f-bu (NCT03247088). Here we report the results of this trial. Methods: Between 3/2018 and 6/2021, 24 patients with AML aged 18 to 70 years with adequate organ function and 8/8-HLA matched related or unrelated donors were enrolled prospectively. The dose of sorafenib was varied among the four values 200, 400, 600, and 800 mg administered from day -24 to -5. Dose-limiting toxicity (DLT) was defined as grade 3 or higher regimen-related non-hematologic, non-infectious, non-GVHD toxicity occurring between day -24 and day 3. The Bayesian Model Averaging Continual Reassessment Method (BMA-CRM) with target DLT probability 0.30 was used to choose doses for successive cohorts of 3 patients. The first cohort was treated at the lowest sorafenib dose 200, with all successive cohorts' doses chosen adaptively by the BMA-CRM. The doses and schedules of busulfan and fludarabine were fixed, with f-Bu dose targeting an area under the concentration vs time curve (AUC) of 20,000 ± 12% μmol.min given over 3 weeks. The first two doses of busulfan (80 mg/m2 IV each) were administered on days -20 and -13 on an outpatient basis. The last four Bu doses were calculated to give a total course AUC of 20,000 ± 12% μmol.min and were given as inpatient following each dose of Flu 40 mg/m2 on days -6 through -3. GVHD prophylaxis was post-transplant cyclophosphamide (PTCy) 50mg/kg on days 3 and 4 and tacrolimus. Recipients of unrelated donor grafts also received MMF. All patients were eligible to receive post-transplant maintenance sorafenib after engraftment. Results: The median age was 52 years (range, 30-70). Disease status was CR in 16 (66.6%) patients, CRi in 5 (20.8%), and advanced in 3 (12.5%). Adverse risk karyotype was present in 10 (41.7%) patients. MRD was present in 13 (54.2%). 9 (38%) had mutated flt3. The donor was unrelated in 14 (58%), and peripheral blood stem cells were the graft source in 21(87.5%). Due to the absence of DLTs, the BMA-CRM assigned 200mg, 400mg, 600mg, and 800mg of sorafenib, respectively, to the first 4 cohorts, and the next 4 cohorts were given 800mg. Only 2 dose-limiting skin toxicities were seen, one in cohort 3 with 600mg of sorafenib and the second in cohort 6 with 800mg of sorafenib. 800mg was the final recommended phase 2 dose. The median follow-up in 20 surviving patients was 7.6 months and 1-year progression free survival was 89% (95% CI 75-100%). Other outcomes are summarized in Table 1. Conclusion: Sorafenib can be safely added to the fractionated busulfan regimen. Early data on efficacy appear promising, with an 89% PFS at 1 year of follow up. Figure 1 Figure 1. Disclosures Popat: Bayer: Research Funding; Abbvie: Research Funding; Novartis: Research Funding; Incyte: Research Funding. Hosing: Nkarta Therapeutics: Membership on an entity's Board of Directors or advisory committees. Rezvani: Bayer: Other: Scientific Advisory Board ; AvengeBio: Other: Scientific Advisory Board ; Navan Technologies: Other: Scientific Advisory Board; GSK: Other: Scientific Advisory Board ; Virogin: Other: Scientific Advisory Board ; Affimed: Other: License agreement and research agreement; education grant, Patents & Royalties, Research Funding; Pharmacyclics: Other: Educational grant, Research Funding; Caribou: Other: Scientific Advisory Board; GemoAb: Other: Scientific Advisory Board ; Takeda: Other: License agreement and research agreement, Patents & Royalties. Qazilbash: Bristol-Myers Squibb: Other: Advisory Board; Biolline: Research Funding; Amgen: Research Funding; Oncopeptides: Other: Advisory Board; NexImmune: Research Funding; Angiocrine: Research Funding; Janssen: Research Funding. Daver: Daiichi Sankyo: Consultancy, Research Funding; Amgen: Consultancy, Research Funding; ImmunoGen: Consultancy, Research Funding; Astellas: Consultancy, Research Funding; Genentech: Consultancy, Research Funding; Gilead Sciences, Inc.: Consultancy, Research Funding; Trillium: Consultancy, Research Funding; Glycomimetics: Research Funding; Abbvie: Consultancy, Research Funding; Hanmi: Research Funding; Bristol Myers Squibb: Consultancy, Research Funding; Pfizer: Consultancy, Research Funding; FATE Therapeutics: Research Funding; Sevier: Consultancy, Research Funding; Novimmune: Research Funding; Trovagene: Consultancy, Research Funding; Novartis: Consultancy; Jazz Pharmaceuticals: Consultancy, Other: Data Monitoring Committee member; Dava Oncology (Arog): Consultancy; Celgene: Consultancy; Syndax: Consultancy; Shattuck Labs: Consultancy; Agios: Consultancy; Kite Pharmaceuticals: Consultancy; SOBI: Consultancy; STAR Therapeutics: Consultancy; Karyopharm: Research Funding; Newave: Research Funding. Ravandi: Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Jazz: Honoraria, Research Funding; Amgen: Honoraria, Research Funding; AstraZeneca: Honoraria; Novartis: Honoraria; Xencor: Honoraria, Research Funding; Taiho: Honoraria, Research Funding; Astex: Honoraria, Research Funding; AbbVie: Honoraria, Research Funding; Agios: Honoraria, Research Funding; Prelude: Research Funding; Syros Pharmaceuticals: Consultancy, Honoraria, Research Funding. Shpall: Magenta: Consultancy; Bayer HealthCare Pharmaceuticals: Honoraria; Magenta: Honoraria; Adaptimmune: Consultancy; Novartis: Consultancy; Navan: Consultancy; Novartis: Honoraria; Takeda: Patents & Royalties; Affimed: Patents & Royalties; Axio: Consultancy. Mehta: CSLBehring: Research Funding; Kadmon: Research Funding; Syndax: Research Funding; Incyte: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document