scholarly journals Chemically Controlled, Immunosuppression-Resistant, Anti-Bcma CAR-T Cells for Treatment of Antibody-Mediated Autoimmunity

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2203-2203 ◽  
Author(s):  
Sowndharya Rajavel ◽  
Cade E. Ito ◽  
Keith Abe ◽  
Valerie Guerrero ◽  
Gene I. Uenishi ◽  
...  

Abstract Auto-reactive antibody production by plasma cells is the direct cause of many auto-immune diseases. In such cases elimination of plasma cells would ameliorate the disease. Chimeric antigen receptor T (CAR-T) cells with cytotoxicity toward cells expressing B-cell maturation antigen (BCMA) have shown remarkable promise for the treatment of multiple myeloma, a plasma cell neoplasm. Elimination of non-malignant plasma cells is a side-effect of anti-BCMA CAR-T treatment of multiple myeloma, suggesting the use of these anti-BCMA CAR T cells for auto-immune indications. Unfortunately, CAR-T administration requires use of lymphodepletion to achieve efficient cell engraftment, and is often accompanied by cytokine release syndrome (CRS), a potentially life-threatening side-effect. As lymphodepletion and CRS pose morbidity/mortality risks that are unacceptable for therapy of many auto-immune diseases, we have utilized CRISPR-Cas9 gene editing to develop a controllable CAR-T cell platform that provides for (1) engraftment with non-cytotoxic transient immunosuppression; and (2) small-molecule dependent CAR T-cell expansion. We have implemented this platform using a unique dual targeting approach in which a BCMA CAR transgene is integrated into the TRAC locus, and additional payloads are integrated into a second locus, thus also enabling an allogeneic manufacturing process. Transgene integration occurred in >50% of cells individually with several percent of cells targeted at two loci. TRAC-targeted, anti-BCMA CAR T cells demonstrated CAR-dependent, target-cell-BCMA-dependent cytotoxicity towards both high-BCMA- and low-BCMA-expressing cell lines and in multiple myeloma cells xenografted into NSG mice. Drug-regulation properties and immunosuppression resistance are the subject of ongoing experiments. Anti-BCMA CAR T cells that are chemically controlled, incapable of graft-versus-host disease, and insensitive to immunosuppression may be an attractive treatment option a variety of antibody-mediated auto-immune conditions. Disclosures Rajavel: Casebia Therapeutics: Employment. Ito:Casebia Therapeutics: Employment. Abe:Casebia Therapeutics: Employment. Guerrero:Casebia Therapeutics: Employment. Uenishi:Casebia Therapeutics: Employment. Scharenberg:Casebia Therapeutics: Employment; Generation Bio: Equity Ownership; Alpine Immune Sciences: Equity Ownership. Cost:Casebia Therapeutics: Employment.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1921-1921 ◽  
Author(s):  
Henia Dar ◽  
Daniel Henderson ◽  
Zinkal Padalia ◽  
Ashley Porras ◽  
Dakai Mu ◽  
...  

Abstract Autologous CAR-T cells targeting BCMA have induced robust and durable responses in patients with relapsed/refractory multiple myeloma. However, autologous cell therapies face several challenges which will likely limit the number of patients that will have access to these therapies. These limitations include manufacturing failure rates, wait time and supply constraints in addition to other factors such as reimbursement. Allogeneic CAR-T cells can potentially overcome these access challenges, and may have several other advantages over autologous therapies. Allogeneic CAR-T cells are derived from robust healthy donor T cells through a batch manufacturing process, which may result in a highly consistent product with greater potency and enable better safety management. Here we show further development and preclinical data for CTX120, an allogeneic "off the shelf" CAR-T cell targeting BCMA. CTX120 is produced using the CRISPR/Cas9 system to eliminate TCR and MHC class I, coupled with specific insertion of the CAR at the TRAC locus. CTX120 shows consistent and high percent CAR expression from this controlled insertion and exhibits target-specific cytotoxicity and cytokine secretion in response to BCMA positive cell lines. CTX120 CAR-T cells retain their cytotoxic capacity over multiple in vitro re-challenges, demonstrating durable potency and lack of exhaustion. In mouse models of multiple myeloma, CTX120 showed typical CAR-T persistence and eliminated tumors completely, resulting in long-term survival as compared to untreated animals. These data support the ongoing development of CTX120 for treatment of patients with multiple myeloma and further demonstrate the potential for our CRISPR/Cas9 engineered allogeneic CAR-T platform to generate potent CAR-T cells targeting different tumor antigens. Disclosures Dar: CRISPR Therapeutics: Employment, Equity Ownership. Henderson:CRISPR Therapeutics: Employment, Equity Ownership. Padalia:CRISPR Therapeutics: Employment, Equity Ownership. Porras:CRISPR Therapeutics: Employment, Equity Ownership. Mu:CRISPR Therapeutics: Employment, Equity Ownership. Kyungah:CRISPR Therapeutics: Employment, Equity Ownership. Police:CRISPR Therapeutics: Employment, Equity Ownership. Kalaitzidis:CRISPR Therapeutics: Employment, Equity Ownership. Terrett:CRISPR Therapeutics: Employment, Equity Ownership. Sagert:CRISPR Therapeutics: Employment, Equity Ownership.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1944-1944 ◽  
Author(s):  
David J Dilillo ◽  
Kara Olson ◽  
Katja Mohrs ◽  
T. Craig Meagher ◽  
Kevin Bray ◽  
...  

Abstract Improving therapies for multiple myeloma (MM) remains a high medical need because of the significant morbidity and mortality of the disease. Targeted immunotherapies represent a promising opportunity to fill this clinical need. B cell maturation antigen (BCMA) is an attractive cell-surface target for MM due to its consistent expression on MM patient malignant plasma cells and expression limited in normal tissue primarily to plasma cells. Redirection of a patient's T cells to recognize tumors by CD3-binding bispecific molecules or through the generation of chimeric antigen receptor (CAR) T cells, has shown preliminary evidence of clinical activity. Bispecific antibodies concurrently engage a tumor antigen on cancer cells and the CD3 signaling machinery on T cells, bringing the tumor cell and T cell into proximity and facilitating T cell activation and tumor cell killing. By contrast, CAR T cell therapy involves re-infusion of the patient's own T cells after ex vivo engineering to express CARs targeting tumor antigens and triggering T cell signaling. Here we describe the generation of REGN5458, a human bispecific antibody that binds to BCMA and CD3. In vitro, REGN5458 efficiently activates T cells and induces polyclonal T cell killing of myeloma cell lines with a range of BCMA cell-surface densities, and also induces cytotoxicity of primary human plasma cells. Similar to gamma-sectretase inhibitors, incubation of myeloma cell lines with REGN5458 increased surface levels of BCMA. In xenogenic studies, after BCMAhigh NCI-H929 and BCMAlow MOLP-8 MM cells were co-implanted with PBMC and grown subcutaneously in immunodeficient NOD/SCID/L2Rgamma-deficient (NSG) mice, REGN5458 doses as low as 0.4 mg/kg significantly suppressed the growth of both tumors. Using aggressive, systemic xenogenic tumor models, in which NSG mice were engrafted with PBMC and intravenously injected with BCMAhigh OPM-2 cells or BCMAlow MOLP-8 cells expressing luciferase, REGN5458 reduced tumor burden and suppressed tumor growth at doses as low as 0.4 mg/kg. In immunocompetent mice genetically engineered to express human CD3, REGN5458 inhibited the growth of syngeneic murine tumors expressing human BCMA at doses as low as 0.04 mg/kg. Finally, as REGN5458 binds to cynomolgus CD3 and BCMA and mediates cytotoxicity of primary cynomolgus plasma cells, the pharmacology of REGN5458 was evaluated in cynomolgus monkeys. REGN5458 administration was well-tolerated, resulting in a mild inflammatory response characterized by transiently increased CRP and serum cytokines. Importantly, REGN5458 treatment led to the depletion of BCMA+ plasma cells in the bone marrow, demonstrating cytotoxic activity in non-human primates. The anti-tumor efficacy of REGN5458 was compared to BCMA-specific CAR T cells using 2nd generation CAR lentiviral constructs containing a single-chain variable fragment binding domain from REGN5458's BCMA binding arm and 4-1BB and CD3z signaling domains. Human PBMC-derived T cells were transduced to express this CAR and expanded. Both REGN5458 and the BCMA CAR T cells demonstrated similar targeted cytotoxicity of myeloma cell lines and primary patient blasts in vitro, and were capable of clearing established systemic OPM-2-luciferase myeloma tumors in NSG mice, but with different kinetics: treatment with REGN5458 resulted in rapid clearance of tumors within 4 days, whereas treatment with BCMA CAR T cells allowed tumors to continue to grow for 10-14 days following injection before rapidly inducing tumor clearance. Thus, REGN5458 exerts its therapeutic effect rapidly after injection, using effector T cells that are already in place. In contrast, BCMA CAR T cells require time to traffic to the tumor site and expand, before exerting anti-tumor effects. Collectively, these data demonstrate the potent pre-clinical anti-tumor activity of REGN5458 that is comparable to that of CAR T cells, and provide a strong rationale for clinical testing of REGN5458 in patients with MM. Disclosures Dilillo: Regeneron Pharmaceuticals: Employment. Olson:Regeneron Pharmaceuticals: Employment. Mohrs:Regeneron Pharmaceuticals: Employment. Meagher:Regeneron Pharmaceuticals: Employment. Bray:Regeneron Pharmaceuticals: Employment. Sineshchekova:Regeneron Pharmaceuticals: Employment. Startz:Regeneron Pharmaceuticals: Employment. Retter:Regeneron Pharmaceuticals: Employment. Godin:Regeneron Pharmaceuticals: Employment. Delfino:Regeneron Pharmaceuticals: Employment. Lin:Regeneron Pharmaceuticals: Employment. Smith:Regeneron Pharmaceuticals: Employment. Thurston:Regeneron Pharmaceuticals: Employment. Kirshner:Regeneron Pharmaceuticals: Employment.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3335-3335
Author(s):  
Cesar Sommer ◽  
Ivana Djuretic ◽  
Julien Valton ◽  
Duy Nguyen ◽  
Janette Sutton ◽  
...  

Abstract Patients with relapsed acute myeloid leukemia (AML) have poor prognosis and limited treatment options. Chimeric antigen receptor (CAR) T cells have demonstrated unprecedented clinical efficacy in hematological malignancies, leading to durable responses in heavily pretreated patients. Adoptive immunotherapies using T cells redirected against AML cells are being pursued as one option with potential curative intent. However, the development of autologous CAR T therapies presents a significant logistical and clinical challenge in a rapidly progressing disease setting such as AML due to the lag time of cell manufacturing. Additionally, harvesting sufficient numbers of healthy T cells from patients with AML may not always be possible. For these reasons the development of an off-the-shelf CAR T cell product may be of benefit. This work details the preclinical evaluation of ALLO-819, an allogeneic CAR T therapy targeting the receptor tyrosine kinase Flt3 (CD135), an AML target with high prevalence in all AML subtypes and limited expression outside of the hematopoietic tissue. To construct a Flt3 CAR, a panel of high affinity (KD values of 0.19 to 233 nM, determined at 37°C) fully-human antibodies was generated using phage display technology. Single-chain variable fragments (scFvs) recognizing different immunoglobulin domains of the extracellular region of Flt3 were inserted into second-generation CAR constructs and tested for their ability to redirect T cell specificity and effector function towards AML cells. A lead CAR exhibiting minimal tonic signaling and potent antitumor activity in orthotopic mouse models of AML (2.5x106 and 1x107 CAR T cells for Eol-1 and Molm-13, respectively) was selected for further engineering to incorporate a safety off-switch in cis. To accomplish this, short amino acid stretches mimicking epitopes for the FDA-approved antibody rituximab were inserted between the hinge and target-binding regions of the CAR. The CAR T cell phenotype and antitumor efficacy were not affected by the presence of the off-switch. In the presence of rituximab, Flt3 CAR T cells were efficiently lysed via complement-dependent cytotoxicity (~ 80 % CAR T cell depletion in 3 hours) in vitro and eliminated in peripheral blood and bone marrow of NSG mice (>100-fold and >300-fold, respectively). Allogeneic ALLO-819 Flt3 CAR T cells with a lower risk of TCR-mediated graft-versus-host disease and resistant to anti-CD52 antibody (alemtuzumab)-mediated lysis were generated by disruption of the T-cell receptor alpha chain (TRAC) and the CD52 loci using TALEN® gene-editing technology. Transient expression of TALEN® in Flt3 CAR T cells resulted in high-efficiency inactivation of both loci and had no impact on T cell phenotype or antitumor efficacy. ALLO-819 Flt3 CAR T cells co-cultured with primary AML blasts ex vivo displayed target-dependent activation, cytokine secretion and cytotoxic activity. Consistent with previous reports, we detected Flt3 expression on a subset of normal hematopoietic stem and progenitor cells (HSPCs) which also showed susceptibility to CAR T cell cytotoxicity. To evaluate off-tumor effects of Flt3 CAR T cells in vivo, NSG mice were administered T cells expressing a CAR with similar affinity to both mouse and human Flt3. Mouse-cross-reactive Flt3 CAR T cells exhibited off-tumor activity that was limited to a subset of bone marrow multipotent progenitors and correlated with antitumor efficacy. Administration of rituximab led to effective depletion of CAR T cells in peripheral blood that was followed by a rapid repopulation of HSPCs to levels observed in naïve mice. In summary, these results support the development of ALLO-819 Flt3 CAR T as a novel immunotherapy for the treatment of AML. Disclosures Sommer: Allogene Therapeutics: Employment, Equity Ownership, Patents & Royalties. Djuretic:Pfizer Inc.: Employment. Valton:Cellectis.Inc: Employment, Equity Ownership, Patents & Royalties. Nguyen:Allogene Therapeutics: Employment, Equity Ownership. Sutton:Allogene Therapeutics: Employment, Equity Ownership. Poulsen:Allogene Therapeutics: Employment, Equity Ownership. Smith:Cellectis. Inc: Employment, Patents & Royalties. Djuretic:Pfizer Inc.: Employment. Chaparro-Riggers:Pfizer Inc.: Employment, Patents & Royalties. Sasu:Allogene Therapeutics: Employment, Equity Ownership, Patents & Royalties.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Faroogh Marofi ◽  
Safa Tahmasebi ◽  
Heshu Sulaiman Rahman ◽  
Denis Kaigorodov ◽  
Alexander Markov ◽  
...  

AbstractDespite many recent advances on cancer novel therapies, researchers have yet a long way to cure cancer. They have to deal with tough challenges before they can reach success. Nonetheless, it seems that recently developed immunotherapy-based therapy approaches such as adoptive cell transfer (ACT) have emerged as a promising therapeutic strategy against various kinds of tumors even the cancers in the blood (liquid cancers). The hematological (liquid) cancers are hard to be targeted by usual cancer therapies, for they do not form localized solid tumors. Until recently, two types of ACTs have been developed and introduced; tumor-infiltrating lymphocytes (TILs) and chimeric antigen receptor (CAR)-T cells which the latter is the subject of our discussion. It is interesting about engineered CAR-T cells that they are genetically endowed with unique cancer-specific characteristics, so they can use the potency of the host immune system to fight against either solid or liquid cancers. Multiple myeloma (MM) or simply referred to as myeloma is a type of hematological malignancy that affects the plasma cells. The cancerous plasma cells produce immunoglobulins (antibodies) uncontrollably which consequently damage the tissues and organs and break the immune system function. Although the last few years have seen significant progressions in the treatment of MM, still a complete remission remains unconvincing. MM is a medically challenging and stubborn disease with a disappointingly low rate of survival rate. When comparing the three most occurring blood cancers (i.e., lymphoma, leukemia, and myeloma), myeloma has the lowest 5-year survival rate (around 40%). A low survival rate indicates a high mortality rate with difficulty in treatment. Therefore, novel CAR-T cell-based therapies or combination therapies along with CAT-T cells may bring new hope for multiple myeloma patients. CAR-T cell therapy has a high potential to improve the remission success rate in patients with MM. To date, many preclinical and clinical trial studies have been conducted to investigate the ability and capacity of CAR T cells in targeting the antigens on myeloma cells. Despite the problems and obstacles, CAR-T cell experiments in MM patients revealed a robust therapeutic potential. However, several factors might be considered during CAR-T cell therapy for better response and reduced side effects. Also, incorporating the CAT-T cell method into a combinational treatment schedule may be a promising approach. In this paper, with a greater emphasis on CAR-T cell application in the treatment of MM, we will discuss and introduce CAR-T cell’s history and functions, their limitations, and the solutions to defeat the limitations and different types of modifications on CAR-T cells.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 24-24
Author(s):  
Ameet K. Mishra ◽  
Iris Kemler ◽  
David Dingli

Chimeric antigen receptor T (CAR-T) cell therapy is a transformative approach to cancer eradication. CAR-T is expensive in part due to the restricted use of each CAR construct for a specific set of tumors such as B cell lymphoma targeted with CD19 and multiple myeloma targeted with BCMA. A CAR construct with broad anti-tumor activity can be advantageous due to wide applicability and scalability of production. We show that CD126, the IL-6 receptor alpha, is an antigen that is expressed by many hematologic and solid malignancies including multiple myeloma, non-Hodgkin lymphoma, acute myeloid leukemia, pancreatic and prostate adenocarcinoma, non-small cell lung cancer and malignant melanoma amongst others. High CD126 expression is a negative prognostic marker in many malignancies. The two CD126 targeting CAR-T cell constructs contain the CD28 anchoring domain followed by 4-1BB and CD3 zeta signaling domain. Lentiviral vectors were generated with triple plasmid (CAR, psPAX2 and pMD2.G) transfection of 293T cells and the vector concentrated by ultracentrifugation and used to transduce human T cells. T cells were isolated from leuko-reduction cones using negative selection with magnetic beads. The transduction efficiency was around 60%. The T cells were activated with anti-CD3/CD28 beads and expanded for two weeks before using for downstream experiments. CD126 CAR-T cells are able to kill many tumor cells in an antigen specific manner and with an efficiency that is directly proportional to the cell surface expression of CD126 expression (rho = 0.6, p = 0.0019). The presence of soluble CD126 in the culture media did not interfere with CAR-T cell killing. The CAR-T constructs bind murine CD126. However, injection of CD126 targeting CAR-T cells in NSG mice did not lead to any evidence of hepatotoxicity and weight loss despite possible expression of this antigen on hepatocytes. In vivo studies in NSG mice with multiple myeloma (RPMI-8226) and prostate adenocarcinoma (DU-145) xenograft models (n=10 tumors per group) showed that the intravenously injected CD126 targeted CAR-T cells (107) infiltrated the tumors, expanded, produced human interferon gamma and killed the tumor cells (p<0.001). Bioluminescence imaging showed control of tumor growth in the actively treated tumors compared to the controls (p<0.05). At post mortem, mice injected with CD126 targeted CAR-T cells had smaller residual tumors compared to controls injected with non-engineered human T cells from the same donor. Binding of sIL-6R by CAR-T cells could mitigate cytokine release syndrome. In support of this, murine SAA-3 levels (the equivalent of human CRP) were lower in mice injected with CD126 CAR-T compared to controls (p<0.05), suggesting that binding of sIL-6R by CAR-T cells could mitigate cytokine release syndrome. CD126 provides a novel therapeutic for CAR-T cells in a broad variety of tumors with low risk of toxicity. Disclosures Dingli: Apellis: Consultancy; Millenium: Consultancy; Janssen: Consultancy; Bristol Myers Squibb: Research Funding; Sanofi-Genzyme: Consultancy; Alexion: Consultancy; Rigel: Consultancy; Karyopharm Therapeutics: Research Funding.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3243-3243
Author(s):  
Graham Lilley ◽  
Alden Ladd ◽  
Daniel Cossette ◽  
Laura Viggiano ◽  
Gregory Hopkins ◽  
...  

Abstract T cells engineered with chimeric antigen receptors (CAR) specific to CD19 have caused rapid and durable clinical responses in ~90% of patients with acute lymphoblastic leukemia. These data support the development of additional CAR T cell products for the treatment of other hematological malignancies. Recently, B cell maturation antigen (BCMA) expression has been proposed as a marker for identification of malignant plasma cells in patients with multiple myeloma (MM). Nearly all MM and some non-Hodgkin's lymphoma tumor cells express BCMA, while normal tissue expression is restricted to plasma cells and a subset of mature B cells. Therefore, BCMA is an attractive CAR T cell target to treat patients with MM and some B cell lymphomas. To this end, using lentiviral vector technology, we successfully generated CAR T cells specific to BCMA that exhibit potent anti-tumor activity to both multiple myeloma and Burkitt's lymphoma in animal models. Manufacture of CAR T cells for individual patient treatment requires the establishment of a robust and reproducible process - since variability in manufacturing could impact the potency of each cell product. To begin to understand the parameters of the manufacturing process that might contribute to the activity of the final product, we first tested the impact of lentiviral vector (LVV) multiplicity of infection (MOI) on CAR T cell phenotype and function. Using a broad range of MOIs (0.625 to 40) across multiple independent PBMC donors we observed no differences in population doubling or cell size throughout the ~10 day manufacturing process, irrespective of the MOI used. As expected, the number of anti-BCMA CAR expressing cells, the level of CAR expression per cell and the average vector copy number (VCN) in the cell product increased proportionally with MOI. Similarly, T cell function, as determined by an IFNg cytokine release assay in response to BCMA-expressing K562 target cells, was also correlated with the LVV MOI. Notably, increased IFNg expression was readily observable at MOIs as low as 1.25 and reached a plateau with T cells generated using an MOI of 20 or more - highlighting the sensitivity of this functional assay. Analogous data demonstrating MOI dependent in vitro killing activity were obtained using a BCMA-expressing tumor cell cytotoxicity assay. Varying the LVV MOI used during transduction simultaneously alters both the amount of anti-BCMA CAR molecules expressed per cell as well as the number of T cells in the cell product that express anti-BCMA CAR. To evaluate each variable in isolation we generated T cell products containing the same frequency of anti-BCMA CAR T cells (26 ± 4% CAR+ T cells) but different levels of anti-BCMA expression per cell by diluting T cell products made with MOIs from 5 to 40 with donor-matched untransduced cells. While these populations had markedly different levels of CAR surface expression per cell (based on anti-BCMA CAR MFI levels measured by flow cytometry) both low and high expressing anti-BCMA CAR T cell products exhibited identical levels of cytotoxicity against BCMA-expressing tumor cells. These data suggest it is the number of CAR expressing cells that is the critical driver of higher functional activity (perhaps due to the efficiency of LVV mediated anti-BCMA CAR expression per transduced cell). Finally, using this information the variability in manufacturing of anti-BCMA CAR T cells was evaluated across 11 independent normal PBMC donors. All 11 products demonstrated very similar properties with respect to cell growth (population doublings, cell volume), and VCN. Importantly, using our standard MOI we obtained a consistent and high level of anti-BCMA CAR expressing T cells that resulted in robust IFNg cytokine release when co-cultured with BCMA-expression cells. Together, our data highlight the frequency of anti-BCMA CAR T cells per cell product as a key parameter for anti-tumor activity in vitro. Moreover, these data suggest that our LVV driven T cell engineering process can reproducibly generate robust anti-BCMA CAR expressing T cell products in a donor independent manner. A phase I clinical trial to evaluate this technology as a cell-based gene therapy for MM is under development. Disclosures Lilley: bluebird bio, Inc: Employment, Equity Ownership. Ladd:bluebird bio, Inc: Employment, Equity Ownership. Cossette:bluebird bio, Inc: Employment, Equity Ownership. Viggiano:bluebird bio, Inc: Employment, Equity Ownership. Hopkins:bluebird bio, Inc: Employment, Equity Ownership. Evans:bluebird bio, Inc: Employment, Equity Ownership. Li:bluebird bio, Inc: Employment, Equity Ownership. Latimer:bluebird bio: Employment, Equity Ownership. Miller:bluebird bio: Employment, Equity Ownership. Kuczewski:bluebird bio: Employment, Equity Ownership. Bakeman:bluebird bio, Inc: Employment, Equity Ownership. MacLeod:bluebird bio, Inc: Employment, Equity Ownership. Friedman:bluebird bio: Employment, Equity Ownership. Maier:bluebird bio, Inc: Employment, Equity Ownership. Paglia:bluebird bio, Inc: Employment, Equity Ownership. Morgan:bluebird bio: Employment, Equity Ownership. Angelino:bluebird bio, Inc: Employment, Equity Ownership.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1735-1735
Author(s):  
Yi Wang ◽  
Ying Gao ◽  
Hui Wang ◽  
Ding Zhang ◽  
Yan Zheng ◽  
...  

Abstract Introduction Multiple myeloma is a hematological malignancy that is prone to be companied by bone marrow destruction, renal impairment and extramedullary infiltration. Current treatments include proteasome inhibitor, immunomodulatory drug, hematopoietic stem cell transplantation, and monoclonal antibody targeted therapies. However, it is still clinically incurable. Chimeric antigen receptor (CAR) T-cell therapy is a new immune targeted therapeutic strategy. It is reported better clinical efficacy for relapsed/refractory multiple myeloma (r/r MM) treatment has been achieved by immunotherapies targeted B-cell maturation antigen (BCMA). Therefore, it is important to investigate the treatment of a novel human BCMA-specific CAR-T therapy for r/r MM. Objective The objective of this clinical study is to evaluate the safety and efficacy of the novel human BCMA-targeting CAR-T therapy in patients with r/r MM, especially patients who relapsed from prior CAR-T therapy. Method This work is a clinical study registered and investigated by our center. CD3+ T cells were negatively selected from patients' peripheral blood mononuclear cells, activated and modified by lentivirus to produce anti-BCMA CAR-T cells. The cells were administrated intravenously to patients after expanding for 7-13 days in vitro. 24 patients had enrolled in this study, with 13 males and 11 females. The median age was 53 years old (range,41-75), and patients with cytogenetically high risk factors accounting for 41.66% (10/24). 50% (12/24) was infiltrated with extramedullary lesions. 16.6% (4/24) of them had relapsed from other CAR-T therapies before this enrollment. 50% (12/24) had been previously conducted autologous hematopoietic stem cell transplantation (HSCT), whereas 4.16% (1/24) with allogeneic HSCT. Patients with the expression of BCMA in the plasma cells higher than 30%, accounted for 25% (6/24). 2-3 days after being administered the lymphodepleting chemotherapy regimen, CAR-T cells were infused intravenously. The indicators of patients' condition were detected, including inflammatory cytokine concentration, serum protein levels, CAR-T cell number copies, and the proportion of plasma cells by bone marrow biopsy. The improvement of patients, the occurrence of adverse reactions, the incidence and grade of cytokine release syndrome (CRS), was analyzed and evaluated. Result All patients received infusions of CAR-T positive cells at the average dose of 9.45×10 6/kg (5-17.5) and the median injection day is the 10th day (8th-13th day) after cell isolation. After infusion, 100% (24/24) of the patients had fever lasting for 48 hours, with 37.5% (9/24) of them showing low blood pressure and being treated with drug. Heart rate increase was found in 45.8% (11/24). Nausea, diarrhea and transient consciousness disorder occurred in 50% (12/24), 33.3% (8/24), and 12.5% (3/24) of them, respectively. 16.6% (4/24) was administrated with dexamethasone to relieve symptoms, with the total dose less than 20 mg, while nobody was treated with IL-6 receptor antagonist. CAR-T cells had expanded in all patients, reaching the peak at the 4th day after infusion (Figure). The levels of IL-6, IL-8 and IFN-γ in peripheral blood also increased significantly. The incidence of CRS is 100%, of which grade I, II and III is 62.5%, 33.3% and 4.2%, respectively. 2 patients showed grade I CRES, constituting 8.3% (2/24). All patients were assessed for the efficacy of CAR-T cells 2 weeks after infusion. ORR was 100%, with 4.2% (1/24) MR, 8.3% (2/24) PR, 62.5% (15/24) VGPR and 25% (6/24) CR. 18 patients were treated for more than 1 month, with 11.1% (2/18) PR, 44.4% (8/18) VGPR, 11.1% (2/18) CR, and 33.3% (6/18) sCR. 16 patients were infused before more than 2 months, with 25% (4/16) VGPR, 12.5% (2/16) CR, 50% (8/16) sCR, and 12.5% (2/16) PD. 6 patents were administrated more than 3 months ago, with 1 developing deep remission to sCR from VGPR. The others remain the same condition. Conclusion The novel human BCMA targeted CAR-T cell therapy of this study showed safety and efficacy in the treatment of r/r MM patients with extramedullary infiltration, high-risk cytogenetical factors as well as relapse with prior BCMA CAR exposures. Deep remission can be achieved. However, more observation need to be conducted. The CAR-T treatment of BCMA target still cannot prevent the disease progress of a small numbers of patients. The control after CAR-T therapy needs more investigation. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3921-3921 ◽  
Author(s):  
Cesar Sommer ◽  
Hsin-Yuan Cheng ◽  
Yik Andy Yeung ◽  
Duy Nguyen ◽  
Janette Sutton ◽  
...  

Autologous chimeric antigen receptor (CAR) T cells have achieved unprecedented clinical responses in patients with B-cell leukemias, lymphomas and multiple myeloma, raising interest in using CAR T cell therapies in AML. These therapies are produced using a patient's own T cells, an approach that has inherent challenges, including requiring significant time for production, complex supply chain logistics, separate GMP manufacturing for each patient, and variability in performance of patient-derived cells. Given the rapid pace of disease progression combined with limitations associated with the autologous approach and treatment-induced lymphopenia, many patients with AML may not receive treatment. Allogeneic CAR T (AlloCAR T) cell therapies, which utilize cells from healthy donors, may provide greater convenience with readily available off-the-shelf CAR T cells on-demand, reliable product consistency, and accessibility at greater scale for more patients. To create an allogeneic product, the TRAC and CD52 genes are inactivated in CAR T cells using Transcription Activator-Like Effector Nuclease (TALEN®) technology. These genetic modifications are intended to minimize the risk of graft-versus-host disease and to confer resistance to ALLO-647, an anti-CD52 antibody that can be used as part of the conditioning regimen to deplete host alloreactive immune cells potentially leading to increased persistence and efficacy of the infused allogeneic cells. We have previously described the functional screening of a library of anti-FLT3 single-chain variable fragments (scFvs) and the identification of a lead FLT3 CAR with optimal activity against AML cells and featuring an off-switch activated by rituximab. Here we characterize ALLO-819, an allogeneic FLT3 CAR T cell product, for its antitumor efficacy and expansion in orthotopic models of human AML, cytotoxicity in the presence of soluble FLT3 (sFLT3), performance compared with previously described anti-FLT3 CARs and potential for off-target binding of the scFv to normal human tissues. To produce ALLO-819, T cells derived from healthy donors were activated and transduced with a lentiviral construct for expression of the lead anti-FLT3 CAR followed by efficient knockout of TRAC and CD52. ALLO-819 manufactured from multiple donors was insensitive to ALLO-647 (100 µg/mL) in in vitro assays, suggesting that it would avoid elimination by the lymphodepletion regimen. In orthotopic models of AML (MV4-11 and EOL-1), ALLO-819 exhibited dose-dependent expansion and cytotoxic activity, with peak CAR T cell levels corresponding to maximal antitumor efficacy. Intriguingly, ALLO-819 showed earlier and more robust peak expansion in mice engrafted with MV4-11 target cells, which express lower levels of the antigen relative to EOL-1 cells (n=2 donors). To further assess the potency of ALLO-819, multiple anti-FLT3 scFvs that had been described in previous reports were cloned into lentiviral constructs that were used to generate CAR T cells following the standard protocol. In these comparative studies, the ALLO-819 CAR displayed high transduction efficiency and superior performance across different donors. Furthermore, the effector function of ALLO-819 was equivalent to that observed in FLT3 CAR T cells with normal expression of TCR and CD52, indicating no effects of TALEN® treatment on CAR T cell activity. Plasma levels of sFLT3 are frequently increased in patients with AML and correlate with tumor burden, raising the possibility that sFLT3 may act as a decoy for FLT3 CAR T cells. To rule out an inhibitory effect of sFLT3 on ALLO-819, effector and target cells were cultured overnight in the presence of increasing concentrations of recombinant sFLT3. We found that ALLO-819 retained its killing properties even in the presence of supraphysiological concentrations of sFLT3 (1 µg/mL). To investigate the potential for off-target binding of the ALLO-819 CAR to human tissues, tissue cross-reactivity studies were conducted using a recombinant protein consisting of the extracellular domain of the CAR fused to human IgG Fc. Consistent with the limited expression pattern of FLT3 and indicative of the high specificity of the lead scFv, no appreciable membrane staining was detected in any of the 36 normal tissues tested (n=3 donors). Taken together, our results support clinical development of ALLO-819 as a novel and effective CAR T cell therapy for the treatment of AML. Disclosures Sommer: Allogene Therapeutics, Inc.: Employment, Equity Ownership. Cheng:Allogene Therapeutics, Inc.: Employment, Equity Ownership. Yeung:Pfizer Inc.: Employment, Equity Ownership. Nguyen:Allogene Therapeutics, Inc.: Employment, Equity Ownership. Sutton:Allogene Therapeutics, Inc.: Employment, Equity Ownership. Melton:Allogene Therapeutics, Inc.: Employment, Equity Ownership. Valton:Cellectis, Inc.: Employment, Equity Ownership. Poulsen:Allogene Therapeutics, Inc.: Employment, Equity Ownership. Djuretic:Pfizer, Inc.: Employment, Equity Ownership. Van Blarcom:Allogene Therapeutics, Inc.: Employment, Equity Ownership. Chaparro-Riggers:Pfizer, Inc.: Employment, Equity Ownership. Sasu:Allogene Therapeutics, Inc.: Employment, Equity Ownership.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2866-2866 ◽  
Author(s):  
Cassie Chou ◽  
Simon Fraessle ◽  
Rachel Steinmetz ◽  
Reed M. Hawkins ◽  
Tinh-Doan Phi ◽  
...  

Background CD19 CAR T immunotherapy has been successful in achieving durable remissions in some patients with relapsed/refractory B cell lymphomas, but disease progression and loss of CAR T cell persistence remains problematic. Interleukin 15 (IL-15) is known to support T cell proliferation and survival, and therefore may enhance CAR T cell efficacy, however, utilizing native IL-15 is challenging due to its short half-life and poor tolerability in the clinical setting. NKTR-255 is a polymer-conjugated IL-15 that retains binding affinity to IL15Rα and exhibits reduced clearance, providing sustained pharmacodynamic responses. We investigated the effects of NKTR-255 on human CD19 CAR T cells both in vitro and in an in vivo xenogeneic B cell lymphoma model and found improved survival of lymphoma bearing mice receiving NKTR-255 and CAR T cells compared to CAR T cells alone. Here, we extend upon these findings to further characterize CAR T cells in vivo and examine potential mechanisms underlying improved anti-tumor efficacy. Methods CD19 CAR T cells incorporating 4-1BB co-stimulation were generated from CD8 and CD4 T cells isolated from healthy donors. For in vitro studies, CAR T cells were incubated with NKTR-255 or native IL-15 with and without CD19 antigen. STAT5 phosphorylation, CAR T cell phenotype and CFSE dilution were assessed by flow cytometry and cytokine production by Luminex. For in vivo studies, NSG mice received 5x105 Raji lymphoma cells IV on day (D)-7 and a subtherapeutic dose (0.8x106) of CAR T cells (1:1 CD4:CD8) on D0. To determine optimal start date of NKTR-255, mice were treated weekly starting on D-1, 7, or 14 post CAR T cell infusion. Tumors were assessed by bioluminescence imaging. Tumor-free mice were re-challenged with Raji cells. For necropsy studies mice received NKTR-255 every 7 days following CAR T cell infusion and were euthanized at various timepoints post CAR T cell infusion. Results Treatment of CD8 and CD4 CAR T cells in vitro with NKTR-255 resulted in dose dependent STAT5 phosphorylation and antigen independent proliferation. Co-culture of CD8 CAR T cells with CD19 positive targets and NKTR-255 led to enhanced proliferation, expansion and TNFα and IFNγ production, particularly at lower effector to target ratios. Further studies showed that treatment of CD8 CAR T cells with NKTR-255 led to decreased expression of activated caspase 3 and increased expression of bcl-2. In Raji lymphoma bearing NSG mice, administration of NKTR-255 in combination with CAR T cells increased peak CAR T cell numbers, Ki-67 expression and persistence in the bone marrow compared to mice receiving CAR T cells alone. There was a higher percentage of EMRA like (CD45RA+CCR7-) CD4 and CD8 CAR T cells in NKTR-255 treated mice compared to mice treated with CAR T cells alone and persistent CAR T cells in mice treated with NKTR-255 were able to reject re-challenge of Raji tumor cells. Additionally, starting NKTR-255 on D7 post T cell infusion resulted in superior tumor control and survival compared to starting NKTR-255 on D-1 or D14. Conclusion Administration of NKTR-255 in combination with CD19 CAR T cells leads to improved anti-tumor efficacy making NKTR-255 an attractive candidate for enhancing CAR T cell therapy in the clinic. Disclosures Chou: Nektar Therapeutics: Other: Travel grant. Fraessle:Technical University of Munich: Patents & Royalties. Busch:Juno Therapeutics/Celgene: Consultancy, Equity Ownership, Research Funding; Kite Pharma: Equity Ownership; Technical University of Munich: Patents & Royalties. Miyazaki:Nektar Therapeutics: Employment, Equity Ownership. Marcondes:Nektar Therapeutics: Employment, Equity Ownership. Riddell:Juno Therapeutics: Equity Ownership, Patents & Royalties, Research Funding; Adaptive Biotechnologies: Consultancy; Lyell Immunopharma: Equity Ownership, Patents & Royalties, Research Funding. Turtle:Allogene: Other: Ad hoc advisory board member; Novartis: Other: Ad hoc advisory board member; Humanigen: Other: Ad hoc advisory board member; Nektar Therapeutics: Other: Ad hoc advisory board member, Research Funding; Caribou Biosciences: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; T-CURX: Membership on an entity's Board of Directors or advisory committees; Juno Therapeutics: Patents & Royalties: Co-inventor with staff from Juno Therapeutics; pending, Research Funding; Precision Biosciences: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Eureka Therapeutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Kite/Gilead: Other: Ad hoc advisory board member.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 740-740 ◽  
Author(s):  
Jesus G. Berdeja ◽  
Yi Lin ◽  
Noopur Raje ◽  
Nikhil Munshi ◽  
David Siegel ◽  
...  

Abstract Introduction: Chimeric antigen receptor (CAR) T cell therapies have demonstrated robust and sustained clinical responses in several hematologic malignancies. Data suggest that achieving acceptable benefit:risk profiles depends on several factors, including the specificity of the antigen target and characteristics of the CAR itself, including on-target, off-tumor activity.To test the safety and efficacy of CAR T cells in relapsed and/or refractory multiple myeloma (RRMM), we have designed a second-generation CAR construct targeting B cell maturation antigen (BCMA) to redirect T cells to MM cells. BCMA is a member of the tumor necrosis factor superfamily that is expressed primarily by malignant myeloma cells, plasma cells, and some mature B cells. bb2121 consists of autologous T cells transduced with a lentiviral vector encoding a novel CAR incorporating an anti-BCMA scFv, a 4-1BB costimulatory motif and a CD3-zeta T cell activation domain. Methods: CRB-401 (NCT02658929) is a multi-center phase 1 dose escalation trial of bb2121 in patients with RRMM who have received ≥ 3 prior regimens, including a proteasome inhibitor and an immunomodulatory agent, or are double-refractory, and have ≥ 50% BCMA expression on malignant cells. Peripheral blood mononuclear cells are collected via leukapheresis and shipped to a central facility for transduction, expansion, and release testing prior to being returned to the site for infusion. Patients undergo lymphodepletion with fludarabine (30 mg/m2) and cyclophosphamide (300 mg/m2) daily for 3 days then receive 1 infusion of bb2121. The study follows a standard 3+3 design with planned dose levels of 50, 150, 450, 800, and 1,200 x 106 CAR+ T cells. The primary outcome measure is incidence of adverse events (AEs), including dose-limiting toxicities (DLTs). Additional outcome measures were quality and duration of clinical response assessed according to the IMWG Uniform Response Criteria for Multiple Myeloma, evaluation of minimal residual disease (MRD), overall and progression-free survival, quantification of bb2121 in blood, and quantification of circulating soluble BCMA over time. Results: Asof May 4, 2017, 21 patients (median 58 [37 to 74] years old) with a median of 5 (1 to 16) years since MM diagnosis, had been infused with bb2121, and 18 patients were evaluable for initial (1-month) clinical response. Patients had a median of 7 prior lines of therapy (range 3 to 14), all with prior autologous stem cell transplant; 67% had high-risk cytogenetics. Fifteen of 21 (71%) had prior exposure to, and 6 of 21 (29%) were refractory to 5 prior therapies (Bort/Len/Car/Pom/Dara). Median follow-up after bb2121 infusion was 15.4 weeks (range 1.4 to 54.4 weeks). As of data cut-off, no DLTs and no treatment-emergent Grade 3 or higher neurotoxicities similar to those reported in other CAR T clinical studies had been observed. Cytokine release syndrome (CRS), primarily Grade 1 or 2, was reported in 15 of 21 (71%) patients: 2 patients had Grade 3 CRS that resolved in 24 hours and 4 patients received tocilizumab, 1 with steroids, to manage CRS. CRS was more common in the higher dose groups but did not appear related to tumor burden. One death on study, due to cardiopulmonary arrest more than 4 months after bb2121 infusion in a patient with an extensive cardiac history, was observed while the patient was in sCR and was assessed as unrelated to bb2121. The overall response rate (ORR) was 89% and increased to 100% for patients treated with doses of 150 x 106 CAR+ T cells or higher. No patients treated with doses of 150 x 106 CAR+ T cells or higher had disease progression, with time since bb2121 between 8 and 54 weeks (Table 1). MRD negative results were obtained in all 4 patients evaluable for analysis. CAR+ T cell expansion has been demonstrated consistently and 3 of 5 patients evaluable for CAR+ cells at 6 months had detectable vector copies. A further 5 months of follow up on reported results and initial data from additional patients will be presented. Conclusions: bb2121 shows promising efficacy at dose levels above 50 x 106 CAR+ T cells, with manageable CRS and no DLTs to date. ORR was 100% at these dose levels with 8 ongoing clinical responses at 6 months and 1 patient demonstrating a sustained response beyond one year. These initial data support the potential of CAR T therapy with bb2121 as a new treatment paradigm in RRMM. CT.gov study NCT02658929, sponsored by bluebird bio and Celgene Disclosures Berdeja: Teva: Research Funding; Janssen: Research Funding; Novartis: Research Funding; Abbvie: Research Funding; Celgene: Research Funding; BMS: Research Funding; Takeda: Research Funding; Vivolux: Research Funding; Amgen: Research Funding; Constellation: Research Funding; Bluebird: Research Funding; Curis: Research Funding. Siegel: Celgene, Takeda, Amgen Inc, Novartis and BMS: Consultancy, Speakers Bureau; Merck: Consultancy. Jagannath: MMRF: Speakers Bureau; Bristol-Meyers Squibb: Consultancy; Merck: Consultancy; Celgene: Consultancy; Novartis: Consultancy; Medicom: Speakers Bureau. Turka: bluebird bio: Employment, Equity Ownership. Lam: bluebird bio: Employment, Equity Ownership. Hege: Celgene Corporation: Employment, Equity Ownership. Morgan: bluebird bio: Employment, Equity Ownership, Patents & Royalties. Quigley: bluebird bio: Employment, Equity Ownership, Patents & Royalties. Kochenderfer: Bluebird bio: Research Funding; N/A: Patents & Royalties: I have multiple patents in the CAR field.; Kite Pharma: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document