scholarly journals Epigenomic Determinants of Transcriptional Activity in ASXL1-Mutant Chronic Myelomonocytic Leukemia

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2987-2987
Author(s):  
Moritz Binder ◽  
Alexandre Gaspar Maia ◽  
Ryan M. Carr ◽  
Christopher Pin ◽  
Kurt Berger ◽  
...  

Introduction: Truncating mutations in the Additional Sex Combs-Like 1 (ASXL1) gene are associated with a proliferative disease phenotype and poor survival outcomes across the spectrum of myeloid malignancies including chronic myelomonocytic leukemia (CMML). ASXL1 is thought to act as a chromatin modifier regulating transcriptional activity, however the exact mechanisms and resulting chromatin states remain controversial. We interrogated the epigenome of 16 patients with ASXL1-mutant and -wildtype CMML using a multiomics approach. Methods: Bone marrow mononuclear cells from patients with CMML (8 ASXL1-mutant, 8 -wildtype) were subjected to targeted NGS of DNA, whole transcriptome shotgun sequencing (RNA-seq), immunoprecipitation (IP) of DNA (hydroxy-)methyl residues (DIP-seq), IP of the histone modifications H3K4me1, H3K4me3, and H3K27me3 (ChIP-seq), and DNA transposase accessibility studies (ATAC-seq). After quality control all samples were sequenced on an Illumina HiSeq 4000 before further processing and data analysis. Global assessments of DNA (hydroxy-)methylation, DNA accessibility, and histone modifications between ASXL1-mutant and -wildtype CMML were performed. Differential gene expression was performed to define the up-regulated genes in ASXL1-mutant disease. The promoter regions of these up-regulated genes (defined as transcription start site ±3kb) were compared using the aforementioned multiomics approach. Epigenomic modification of the promoter region facilitating up-regulation of transcription was defined as the presence of a signal peak in ASXL1-mutant disease (in the absence of a signal peak in -wildtype disease) or 25% increase in a common signal peak (H3K4me1/3, 5hmC), the presence of a unique signal peak in ASXL1-mutant disease (ATAC), or the absence of a signal peak in ASXL1-mutant disease (in the presence of a signal peak in -wildtype disease), or 25% decrease in a common signal peak (H3K27me3, 5mC). Results: Sixteen patients with CMML, median age 69 years (48 - 77), 63% male, were included. Half of the patients had proliferative disease (pCMML) and half of them had truncating frameshift mutations in ASXL1 (heatmap). All ASXL1 variant allele frequencies were compatible with heterozygosity (31 - 48%). The burden of co-mutations was similar between ASXL1-wildtype and ASXL1-mutant disease (21 versus 23 per group; no difference in the median number of co-mutations, p = 0.684). The spectrum of co-mutations was typical for CMML, involving spliceosome components, epigenetic regulators, chromatin regulators, and cell signaling molecules (heatmap). There was a predominant up-regulation of gene expression in ASXL1-mutant patients: 707 genes up- and 124 down-regulated (volcano plot, FDR < 0.05 for all genes). Functional annotation of the up-regulated genes showed cell division, mitotic nuclear division, sister chromatid cohesion, DNA replication, and G1/S transition to be the 5 most enriched processes (accounting for 29% of all up-regulated genes, FDR < 1x10-10 for all terms). The up-regulated genes included several potential therapeutic targets and HOXA family members (including HOXA9). There were global increases in H3K4me1/3, 5mC, and 5hmC, decreases in H3K27me3, as well as a more relaxed chromatin conformation (bar graphs). Many of these epigenomic changes affected non-coding regions. When focusing on the promoter regions of the 707 up-regulated genes there was evidence of one or more of the interrogated epigenomic mechanisms facilitating transcription for 519 of the genes (73%). The most abundant mechanism was histone modification, followed by changes in DNA (hydroxy-)methylation, and increased chromatin accessibility, with considerable overlap (Venn diagram). For HOXA9, a known driver of leukemogenesis, the data supported a loss of H3K27me3 as the most prominent among the interrogated epigenomic regulatory mechanisms (average signal tracks). Conclusions: The transcriptome and chromatin conformation of ASXL1-mutant CMML are skewed towards proliferation and mirror the aggressive disease phenotype observed in practice. There is evidence of histone modification as well as changes in DNA methylation, and chromatin conformation facilitating transcriptional activity including known leukemogenic drivers. Additional regulatory mechanisms such as gene body methylation and enhancer elements require further exploration. Figure Disclosures Patnaik: Stem Line Pharmaceuticals.: Membership on an entity's Board of Directors or advisory committees.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2981-2981
Author(s):  
Moritz Binder ◽  
Alexandre Gaspar Maia ◽  
Ryan M. Carr ◽  
Terra Lasho ◽  
Thomas E. Witzig ◽  
...  

Introduction: Additional Sex Combs-Like 1 (ASXL1) is a chromatin modifier frequently affected by truncating mutations in myeloid malignancies. These mutations are associated with poor survival outcomes and increased rates of acute leukemic transformation. In chronic myelomonocytic leukemia (CMML), ASXL1 mutations are thought to affect transcriptional activity mainly by modifying histone marks, however additional epigenomic mechanisms have not been fully explored. We interrogated the epigenome of patients with ASXL1-mutant (MT) and -wildtype (WT) CMML using a multiomics approach to define cis-regulatory elements (CREs) such as distal enhancers (DEs). Methods: Bone marrow mononuclear cells from patients with CMML were subjected to targeted NGS of DNA, whole transcriptome shotgun sequencing (RNA-seq), immunoprecipitation (IP) of DNA (hydroxy-)methyl residues (DIP-seq), IP of the histone modifications H3K4me1, H3K4me3, and H3K27me3 (ChIP-seq), and DNA transposase accessibility studies (ATAC-seq). After quality control all samples were sequenced on an Illumina HiSeq 4000 before further processing and data analysis. Global assessments of DNA (hydroxy-)methylation, DNA accessibility, and histone modifications between ASXL1 MT and WT CMML were performed. The samples in the two groups were treated as biological replicates and subjected to a consensus peak calling strategy requiring an overlap of at least 30% between samples and an adjusted p-value < 5x10-5 for a signal peak to be considered statistically significant. Differential gene expression was estimated to define the up-regulated genes in ASXL1 MT CMML. Potential CREs were defined as sites with statistically significant signal peaks overlapping in at least two of the three epigenomic marks: H3K4me1, 5hmC, and ATAC. Potential DEs were defined as CREs in non-coding regions outside promoter regions (defined as transcription start site ±3kb) that were annotated in GeneHancer. Annotated DEs only present in ASXL1 MT but not WT CMML (specific DEs) were intersected with the list of up-regulated genes and the ReMap atlas. Results: Sixteen WHO-defined CMML patients were included, median age 69 years (48 - 77), 63% male; of which 8 patients (50%, all truncating frame shift mutations) were ASXL1 MT and 8 (50%) WT. The burden and spectrum of co-mutations was similar between ASXL1 WT and MT CMML (21 versus 23 per group; p = 0.684; heatmap). There was a predominant up-regulation of gene expression in ASXL1 MT CMML: 707 genes up- and 124 down-regulated (volcano plot, FDR < 0.050 for all genes). There were 64336 potential CREs, the vast majority (97%) being present in both ASXL1 MT and WT CMML (left Venn diagram). These CREs were most commonly located in introns, promoter regions, and distal non-coding regions (bar graph and pie chart). There were 1303 CREs unique to ASXL1 MT CMML (specific DEs), 1161 (90%) of which were annotated in GeneHancer (left Euler diagram). Of these 1161 annotated specific DEs 859 (74%) were located outside promoter regions and 34 (4%) of them were known to be associated with genes up-regulated in ASXL1 MT CMML (Euler diagrams). These specific DEs were characterized by an increase in H3K4me1 occupancy and DNA accessibility (average signal tracks, purple bars indicating annotated DEs, thin bars below peaks indicating statistical significance). We previously observed epigenomic modification of promoter regions in 519 of the 707 up-regulated genes (73%) facilitating transcriptional activity in ASXL1 MT CMML. For 13 of the up-regulated genes (right Venn diagram, blue genes in volcano plot) the specific DEs were the sole identified mechanism, while for the other 21 genes there were additional mechanisms noted in the promoter region. The top five transcription factor candidates binding the 34 specific DEs included JMJD1C, MYC, KDM5B, RCOR1, and HDAC2 (-log10(E) > 40 for all candidates). Conclusions: Using a multiomics approach based on H3K4me1, 5hmC, and ATAC data we identified potential CREs in ASXL1 MT CMML and characterized potential DEs using publicly available annotation data. Specific DEs were associated with up-regulated genes serving as a possible explanation for the observed transcriptional activity, shedding further light on the adverse prognostic impact associated with ASXL1 mutations. Figure 1 Disclosures Patnaik: Stem Line Pharmaceuticals.: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 31-32
Author(s):  
Moritz Binder ◽  
Ryan M. Carr ◽  
Terra Lasho ◽  
Christy Finke ◽  
Abhishek A. Mangaonkar ◽  
...  

Introduction: Truncating mutations in Additional Sex Combs-Like 1 (ASXL1) are associated with a high-risk disease phenotype in myeloid malignancies. In chronic myelomonocytic leukemia (CMML), truncating ASXL1 mutations are known to increase transcriptional activity of leukemic driver genes and have been associated with gene body hypermethylation. We interrogated the transcriptome and methylome of patients with ASXL1-mutant (MT) and -wildtype (WT) CMML using a multi-omics approach to test the hypothesis that gene expression is mediated through gene body methylation. Methods: Bone marrow mononuclear cells from patients with ASXL1 WT (n=8) and MT (n=8) CMML were subjected to targeted NGS of DNA, whole transcriptome shotgun sequencing (RNA-seq), and immunoprecipitation of DNA methyl residues (DIP-seq). After quality control all samples were sequenced on an Illumina HiSeq 4000 before further processing and data analysis. Differential gene expression analysis was performed to identify genes up-regulated in MT CMML. The samples in the two groups were treated as biological replicates and subjected to a consensus peak calling strategy requiring an overlap of at least 30% between samples and an adjusted p-value &lt; 5x10-5 for a methylation peak to be considered statistically significant. For validation purposes methylation analysis was performed on 3 ASXL1 MT and 3 WT CMML patients using Illumina Infinium MethylationEPIC microarrays and differentially methylated regions were identified using a bump hunting strategy. Gene body methylation was defined as methylation in gene bodies (outside the promoter region, i.e. transcription start site ±2kb). Gene body methylation was compared between WT and MT CMML for the up-regulated genes and correlated with expression of all genes in MT CMML. Results: Sixteen WHO-defined CMML patients were included, median age 69 years (48-77), 63% male, 50% had truncating ASXL1 frame shift mutations. Abnormal karyotypes were observed in the same number of patients and the burden of co-mutations was similar between the two groups (median number per group 3 vs. 3, p=0.508). This included several modulators of DNA methylation including TET2, DNMT3A, and IDH2 (median number per group 1 vs. 1, p=0.699). There was a predominant up-regulation of gene expression in MT CMML: 707 genes up- and 124 down-regulated (FDR&lt;0.050) without evidence of differential methylation in promoter regions of the differentially expressed genes. There was no difference in the number of genes with consensus methylation peaks in the gene body or the extent of gene body methylation (area under the consensus peaks) between MT and WT CMML for the differentially expressed genes (Figure 1a). We further validated these results using methylation microarrays (Figure 1b). Among the MT CMML patients, there was a curvilinear relationship between gene body methylation and gene expression across all genes with intermediate gene body methylation being associated with the highest gene expression (Figure 1c). As an alternative unbiased approach, we identified 1595 differentially methylated regions (DMR, regions with FDR&lt;0.05) in the validation data set. We mapped all hypermethylated regions to gene bodies requiring that there was no concurrent hypermethylation of the promoter region of the same gene. With this approach we identified one of the 707 up-regulated genes (0.14%) with evidence of isolated gene body hypermethylation (HBZ, log2-fold change in gene expression 4.25, FDR=0.0008, DMR area=1.61, DMR FDR=0.018). Representative examples of up-regulated mitotic kinases without evidence of differential gene body methylation are shown in Figure 1d (pie charts represent the mean β-values of microarray probes, p-values represent the comparisons of mean β-values between MT and WT CMML per gene). Conclusions: Gene body methylation was positively associated with gene expression in MT CMML. However, the lack of differential gene body methylation between WT and MT CMML for the up-regulated genes make it an unlikely explanation for the observed increase in transcriptional activity among patients with MT CMML. Figure 1 Disclosures Ordog: Millipore Sigma: Patents & Royalties.


2020 ◽  
Vol 50 (5) ◽  
pp. 879-884
Author(s):  
Anne Laure Roupie ◽  
Alexis Guedon ◽  
Benjamin Terrier ◽  
Constance Lahuna ◽  
Vincent Jachiet ◽  
...  

2006 ◽  
Vol 30 (8) ◽  
pp. 1043-1047 ◽  
Author(s):  
M. Daskalakis ◽  
N. Mauritzson ◽  
B. Johansson ◽  
K. Bouabdallah ◽  
F. Onida ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document