scholarly journals Low-Dose Triptolide Enhances Bromodomain Inhibitor JQ1-Induced Apoptosis of Acute Myeloid Leukemia Cells Via Down-Regulation of c-Myc Following RAS/MEK/ERK Inhibition

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5757-5757
Author(s):  
Bing Xu ◽  
Yuanfei Shi ◽  
Haijun Zhao ◽  
Yi Qiu

The current therapy for acute myeloid leukemia (AML) remains greatly challengeable because most patients ultimately relapse due to resistant to current chemotherapies. Therefore, development of novel therapies using a variety of agents targeting varying pathways is needed to further improve patients' survival. Here we report that low dose triptolide (TPL), a natural product derived from plant Tripterygium wilfordii, could enhance bromodomain inhibitor JQ1-induced apoptosis of AML cell lines as well as primary cells from patients with de novo and relapsed or refractory (R/R) AML, while sparing their normal counterparts. Moreover, combination of TPL and JQ1 showed a more powerful activity to suppress AML cell growth in a xenograft model than single agent. Mechanistically, the synergetic effects of TPL and JQ1 were associated with impaired mitochondrial membrane potential, increased reactive oxygen species (ROS) production and imbalance of the Bcl2 family of pro-apoptotic and anti-apoptotic proteins, leading to caspase-dependent apoptosis. Meanwhile, RNAseq analysis revealed that ERK/MAPK signaling cascades are responsible for the enhanced activity of TPL in combination with JQ1 against AML. In summary, this study demonstrates that low-dose TPL synergizes with JQ1 to target AML through inhibiting ERK/MAPK signaling and mitochondrial apoptosis pathway, supporting a potential option of combination of TPL and JQ1 for AML treatment. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4026-4026
Author(s):  
Nathaniel C. Doro ◽  
Deepika Lal ◽  
Peter King ◽  
Eddy Freyne ◽  
Tim Perera ◽  
...  

Abstract JNJ-26483327 is a novel oral Pan Her/Src/VEGFR-3 inhibitor which has previously been shown in preclinical models to cross the blood-brain barrier and to reach high levels in brain, solid tumor, and bone marrow sites. JNJ-26483327 is not an active substrate for P-glycoprotein pumps and has been well tolerated to date in an ongoing phase I trial. VEGF-C signaling through the VEGFR-3 (FLT-4) receptor has been shown to promote growth of acute myeloid leukemia (AML) cells and to mediate resistance to multiple chemotherapy drugs in vitro. Anti-VEGFR-3 antibody therapy decreased angiogenesis, increased hypoxia and necrosis, and reduced lymph node metastases in solid tumor xenografts. To date, however, VEGF-C/VEGFR-3 inhibition has not been actively been investigated for treatment of hematological malignancies. We hypothesized that JNJ- 26483327 treatment of VEGFR-3 expressing systemic AML would limit tumor growth and lymphatic spread via VEGF-C/VEGFR-3 mechanisms. An initial dose-finding pilot experiment was performed using SCID mice engrafted via tail vein with ten million HELluc cells, human acute myeloid leukemia cells with known expression of VEGF-A/C and VEGFR-2/3 and stably transfected with luciferase constructs to facilitate small animal imaging. Mice were treated with PBS, vehicle (200 mL by mouth twice daily), low dose JNJ-26483327 (75 mg/kg by mouth twice daily, total 150 mg/kg/day) and high dose JNJ- 26483327 (125 mg/kg by mouth daily, total 250 mg/kg/day) for 10 consecutive days. We found that low dose JNJ-26483327 therapy significantly improved the median survival of HELluc systemic xenografts by 46% (26 days longer than vehicle-treated controls) (p<0.05). Although high dose JNJ-26483327 prolonged median survival over vehicletreated controls, the difference was not statistically significant. Moreover, although JNJ- 26483327 improved survival, HELluc leukemia burden (as measured by bioluminescent imaging) was not significantly reduced or eradicated as compared to control, consistent with cytostatic but not cytotoxic anti-tumor effects. VEGFR-3 signaling has also been shown to mediate leukemia cell proliferation, survival, and resistance to chemotherapy. Based on preclinical and clinical data demonstrating improved anti-tumor activity of VEGF inhibitors when combined with chemotherapy, we hypothesized that combining JNJ-26483327 with chemotherapy used in conventional AML therapy may result in additive synergistic anti-tumor effects. To determine if JNJ-26483327 inhibition enhanced the effects of cytotoxic chemotherapy, systemic HELluc tumor bearing mice were treated with low dose JNJ-26483327 (150 mg/kg/day for 10 days) and a single maximally tolerated dose of doxorubicin (1.5mg/kg). Both single agent doxorubicin and single agent JNJ-26483327 treatment resulted in significant reduction of HELluc tumor burden. However, no significant decrease in leukemia burden was observed after combination JNJ-26483327+doxorubicin treatment when compared to single agent groups. Lastly we postulated that combination therapies of JNJ-26483327 with other anti-VEGF therapies directed at inhibition of VEGF-A, VEGFR-1, or VEGFR-2 would result in inhibition of all known VEGFR signaling pathways and result in improved anti-leukemic effects of JNJ-26483327 therapy. Systemic HELluc bearing mice were treated with PBS, vehicle, low dose JNJ-26483327, an anti-hVEGF-A antibody BV (bevacizumab, Genentech) or combination JNJ-26483327+ BV. Results showed that single agent low dose JNJ- 26483327 or single agent BV significantly reduced HELluc tumor burden up until day 20. Combination JNJ-26483327+BV treatment, however, did not result in additive/synergistic anti-leukemic effects as compared to single agent therapy and may in fact have resulted in possible antagonistic effects. Conclusions: Single agent JNJ-26483327 therapy prolongs survival of mice engrafted with VEGFR-3+ HEL AML cells. Limitations of the above studies include the short duration of JNJ-26483327 administration (10 days only) and lack of synergistic effects of JNJ-26483327 when combined with doxorubicin and anti-hVEGF-A antibody therapy. Future studies will address the effects of long-term JNJ-26483327 administration on AML stem cell growth using NOD/SCID mouse models engrafted with patient samples and combination JNJ-26483327+ cytarabine/anthracycline chemotherapy.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Vigna E ◽  
◽  
Caracciolo D ◽  
Martino E ◽  
Mendicino F ◽  
...  

Older and unfit patients with Acute Myeloid Leukemia (AML), which are uneligible for standard induction therapy, have limited treatment options. The therapeutic approach in these cases is based on the use of hypomethylating agents, either decitabine or azacitidine, or Low-Dose Cytarabine (LDAC). However, despite the extensive use of these agents, there is no consensus regarding the extent of their efficacy, and clinical benefit deriving from their use is very modest. We present a case of FLT3- and TP53-mutated AML in an unfit patient with congenital agammaglobulinemia, responsive to single agent decitabine, with a response duration of over 20 months.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Yanling Tao ◽  
Jingjing Zhang ◽  
Lulu Chen ◽  
Xin Liu ◽  
Mingkang Yao ◽  
...  

AbstractAcute myeloid leukemia (AML) is a hematological malignancy with a low cure rate, especially in the elderly. Previous studies have shown that long non-coding RNA (lncRNA) may be an important factor in the pathogenesis of hematological malignancies, including acute myeloid leukemia (AML). However, the biological roles and clinical significances of most lncRNAs in AML are not fully understood. LncRNA CD27 Antisense RNA 1 (CD27-AS1), as a member of lncRNA family, has rare reports on its function. In present study, we found that the expression of CD27-AS1 examined by quantitative real-time PCR was markedly increased in the AML patients (N = 40) compared with healthy volunteers (N = 40). The overall survival time was significantly shorter in patients with higher CD27-AS1 expression than that in patients with lower CD27-AS1 (P < 0.01). Furthermore, downregulation of CD27-AS1 in AML cells suppressed proliferative ability, arrested cell cycle in G0/G1 phase, and induced apoptosis. However, CD27-AS1 overexpression further enhanced the malignant phenotype of AML cells. Additionally, CD27-AS1 was proved to increase PBX3 expression through sponging miR-224-5p. CD27-AS1 knockdown blocked the MAPK signaling through PBX3 silencing and further inhibited the cell growth of AML cells. Taken together, we demonstrate that CD27-AS1 may be a potential prognostic biomarker of AML, and our finding also provides a new insight for non-coding RNA-based therapeutic intervention of AML.


Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 388
Author(s):  
Maria Chiara Fontana ◽  
Jacopo Nanni ◽  
Andrea Ghelli Luserna di Rorà ◽  
Elisabetta Petracci ◽  
Antonella Padella ◽  
...  

In acute myeloid leukemia (AML), the restoration of p53 activity through MDM2 inhibition proved efficacy in combinatorial therapies. WIP1, encoded from PPM1D, is a negative regulator of p53. We evaluated PPM1D expression and explored the therapeutic efficacy of WIP1 inhibitor (WIP1i) GSK2830371, in association with the MDM2 inhibitor Nutlin-3a (Nut-3a) in AML cell lines and primary samples. PPM1D transcript levels were higher in young patients compared with older ones and in core-binding-factor AML compared with other cytogenetic subgroups. In contrast, its expression was reduced in NPM1-mutated (mut, irrespective of FLT3-ITD status) or TP53-mut cases compared with wild-type (wt) ones. Either Nut-3a, and moderately WIP1i, as single agent decreased cell viability of TP53-wt cells (MV-4-11, MOLM-13, OCI-AML3) in a time/dosage-dependent manner, but not of TP53-mut cells (HEL, KASUMI-1, NOMO-1). The drug combination synergistically reduced viability and induced apoptosis in TP53-wt AML cell line and primary cells, but not in TP53-mut cells. Gene expression and immunoblotting analyses showed increased p53, MDM2 and p21 levels in treated TP53-wt cells and highlighted the enrichment of MYC, PI3K-AKT-mTOR and inflammation-related signatures upon WIP1i, Nut-3a and their combination, respectively, in the MV-4-11 TP53-wt model. This study demonstrated that WIP1 is a promising therapeutic target to enhance Nut-3a efficacy in TP53-wt AML.


Author(s):  
Michael Heuser ◽  
B. Douglas Smith ◽  
Walter Fiedler ◽  
Mikkael A. Sekeres ◽  
Pau Montesinos ◽  
...  

AbstractThis analysis from the phase II BRIGHT AML 1003 trial reports the long-term efficacy and safety of glasdegib + low-dose cytarabine (LDAC) in patients with acute myeloid leukemia ineligible for intensive chemotherapy. The multicenter, open-label study randomized (2:1) patients to receive glasdegib + LDAC (de novo, n = 38; secondary acute myeloid leukemia, n = 40) or LDAC alone (de novo, n = 18; secondary acute myeloid leukemia, n = 20). At the time of analysis, 90% of patients had died, with the longest follow-up since randomization 36 months. The combination of glasdegib and LDAC conferred superior overall survival (OS) versus LDAC alone; hazard ratio (HR) 0.495; (95% confidence interval [CI] 0.325–0.752); p = 0.0004; median OS was 8.3 versus 4.3 months. Improvement in OS was consistent across cytogenetic risk groups. In a post-hoc subgroup analysis, a survival trend with glasdegib + LDAC was observed in patients with de novo acute myeloid leukemia (HR 0.720; 95% CI 0.395–1.312; p = 0.14; median OS 6.6 vs 4.3 months) and secondary acute myeloid leukemia (HR 0.287; 95% CI 0.151–0.548; p < 0.0001; median OS 9.1 vs 4.1 months). The incidence of adverse events in the glasdegib + LDAC arm decreased after 90 days’ therapy: 83.7% versus 98.7% during the first 90 days. Glasdegib + LDAC versus LDAC alone continued to demonstrate superior OS in patients with acute myeloid leukemia; the clinical benefit with glasdegib + LDAC was particularly prominent in patients with secondary acute myeloid leukemia. ClinicalTrials.gov identifier: NCT01546038.


Sign in / Sign up

Export Citation Format

Share Document