scholarly journals IL-33 Therapy Prevents Acute Lung Injury after Transplantation Via IL-9-Producing Type 2 Innate Lymphoid Cells Induction

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 583-583
Author(s):  
Hua Jiang ◽  
Abdulraouf Ramadan ◽  
Becquet Laurine ◽  
Tu Szu-Wei ◽  
Hong Liu ◽  
...  

Idiopathic pneumonia syndrome (IPS) is a noninfectious acute lung injury, often fatal, following allogeneic hematopoietic cell transplantation (HCT). Similar to graft-versus-host disease (GVHD), IPS is mediated by type 1 cytopathic T cells accompanied with high levels of proinflammatory cytokines. We previously showed that elevated plasma soluble Stimulation-2 (sST2), which acts as a decoy receptor for IL-33, is a risk factor of death by GVHD (N. Engl. J. Med, 2013) or by IPS (Biol Blood Marrow Transplant, 2018). ST2 blockade of the excess of sST2 with a neutralizing antibody or small molecules released plasmatic IL-33, increasing its availability to cytoprotective T cells expressing the transmembrane molecule form of ST2, such as regulatory T cells (Tregs) reducing the type 1 proinflammatory T cell-response (Sci Transl Med, 2015; JCI Insight, 2019). The membrane-ST2 is also expressed on type 2 innate lymphoid cells (ILC2s), mostly present in lungs. Herein, we first confirmed in a cohort of 673 HCT patients that plasma sST2 measured 14 days following HCT is increased 10 fold in IPS patients (n=22) as compared to controls with no IPS/GVHD (n=271), and is 6 fold higher as compared to GVHD patients (n=380) (Figure 1A). Patients with IPS and high sST2 levels above the median of 200 ng/ml, were significantly more likely to die than patients with lower sST2 levels (Figure 1B). In a therapeutic translational purpose, we then inquired if local administration of IL-33 via intranasal route at a dose of 500 ng/mouse daily (5 doses from day -1 to +3) will ameliorate the recipients' pulmonary function tests in a major-mismatched B6 → Balb/c HCT murine model. Allogeneic recipients that received IL-33 improved their lung compliance (C), lung resistance (R), and elastance (E) as compared to vehicle treated mice (Figure 2A). Based on our patients' data, we further explored the sST2/IL-33 ratio. Although the treatment was local, plasma IL-33 increased at day +7 post-HCT and therefore the sST2/IL-33 ratio was significantly decreased in IL-33 treated mice (Figure 2B). Parraleling this decrease, both systemic IFNγ and TNFα at day +7 post-HCT were significantly lower in mice treated with IL-33 compared to vehicle treated mice (Figure 2B). Findings in the plasma were also correlated with a local decrease of IFNγ secretion in the bronchoalveolar lavage of IL-33 treated mice (not shown). The frequencies and numbers of donor CD45.1+ IFNg+CD4+ and IFNg+CD8+ donor T cells in the lungs of IL-33 treated mice were also significantly decreased as compared to vehicle treated mice (Figure 2C). We next sought to determine if IL-33 had an impact on recipient ILC2s (CD45.2+Lin-CD90.2+GATA3+ST2+). As shown in Figure 2D, recipient mice treated with IL-33 had significant higher frequencies of lung ILC2s at day +7 post-HCT compared to mice treated with vehicle. RNA-seq analysis of sorted ILC2s from the lungs of naïve GATA3 reporter mice treated with IL-33 showed increased Il9 and PU.1 transcripts in lung ILC2s, validated at the protein level in allogeneic mice treated with IL-33 as compared to allogeneic vehicle treated mice in which ILC2s were undetectebale (Figure 2D). As antibody (Ab) injection is more clinically relevant than local cytokine instillation, and since we have shown that anti-ST2 Ab results in IL-33 increase, we tested this in a minor-mismatched B6 → C3H.SW HCT murine model, and respectively treated mice with anti-ST2 Ab 100μg/dose every other day (6 doses total) or anti-ST2 Ab 200μg/dose for 2 doses at days -1 and +1 or isotype 100μg/dose for 6 doses. Prophylactic administration of anti-ST2 Ab with 6 doses and 2 doses significantly decreases mortality as compared to isotype with six doses allowing a better survival than the peritransplant administration (Figure 3A). Plasma IL-33 increased in both anti-ST2 treated groups vs. isotype (Figure 3B). Consistently, both plasma IFNγ and TNFα were significantly decreased in anti-ST2 Ab treated groups (Figures 3C, 3D). Percentages of cytopathic lung donor CD4+IFNγ+ and CD8+IFNγ+ T cells were decreased (Figure 3E) while cytoprotective lung recipient total, IL-9+, and PU.1+ ILC2s were increased in anti-ST2 Ab treated groups vs. isotype (Figures 3F, 3G). Tregs in both anti-ST2 Ab treated groups were concomitantly increased (Figure 3H). We concluded that not only is sST2 a prognostic biomarker for IPS but it is also a promising therapeutic target that may prevent IPS via IL-33 induced IL-9 secreting ILC2s. Disclosures Paczesny: Viracor Eurofins Clinical Diagnostic: Patents & Royalties.

2020 ◽  
Vol 40 (4) ◽  
pp. 853-864 ◽  
Author(s):  
Tian X. Zhao ◽  
Stephen A. Newland ◽  
Ziad Mallat

Regulatory T cells and type-2 innate lymphoid cells represent 2 subsets of immune cells, which have been shown in preclinical models to be important in atherosclerosis and myocardial repair. Regulatory T cells play a crucial role in immune homeostasis and tolerance via their interactions with effector T cells, dendritic cells, and monocytes/macrophages. They also utilize and secrete inhibitory cytokines, including interleukin 10 and transforming growth factor β, to regulate or suppress pathogenic immune responses. Type-2 innate lymphoid cells have an important role in type-2 immune responses and tissue repair through secreting interleukins 5 and 13, as well as a variety of biological mediators and growth factors. Intriguingly, interleukin-2 has emerged as a common cytokine, which can be harnessed to upregulate both cell types, and also has important translational consequences as clinical trials are ongoing for its use in cardiovascular disease. Here, we briefly review the biology of these regulatory immune cell types, discuss the preclinical and clinical evidence for their functions in cardiovascular disease, examine the prospects for clinical translation and current ongoing trials, and finally, postulate how overlap in the mechanisms of upregulation may be leveraged in future treatments for patients.


2019 ◽  
Vol 45 (4) ◽  
pp. 341-346 ◽  
Author(s):  
F. Liu ◽  
H. Wang ◽  
W. Feng ◽  
X. Ye ◽  
X. Sun ◽  
...  

2015 ◽  
Vol 29 (S1) ◽  
Author(s):  
Jonathan Proto ◽  
Manikandan Subramanian ◽  
Mohammed Islam ◽  
Jaime Hook ◽  
Galina Gusarova ◽  
...  

2017 ◽  
Vol 55 (4) ◽  
pp. 339-347 ◽  
Author(s):  
L. Lin ◽  
F. Dai ◽  
J.J. Wei ◽  
X.Y. Tang ◽  
Z. Chen ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Nhi Ngo Thi Phuong ◽  
Vittoria Palmieri ◽  
Alexandra Adamczyk ◽  
Robert Klopfleisch ◽  
Jost Langhorst ◽  
...  

The hallmarks of inflammatory bowel disease are mucosal damage and ulceration, which are known to be high-risk conditions for the development of colorectal cancer. Recently, interleukin (IL)-33 and its receptor ST2 have emerged as critical modulators in inflammatory disorders. Even though several studies highlight the IL-33/ST2 pathway as a key factor in colitis, a detailed mode of action remains elusive. Therefore, we investigated the role of IL-33 during intestinal inflammation and its potential as a novel therapeutic target in colitis. Interestingly, the expression of IL-33, but not its receptor ST2, was significantly increased in biopsies from the inflamed colon of IBD patients compared to non-inflamed colonic tissue. Accordingly, in a mouse model of Dextran Sulfate Sodium (DSS) induced colitis, the secretion of IL-33 significantly accelerated in the colon. Induction of DSS colitis in ST2-/- mice displayed an aggravated colon pathology, which suggested a favorable role of the IL 33/ST2 pathway during colitis. Indeed, injecting rmIL-33 into mice suffering from acute DSS colitis, strongly abrogated epithelial damage, pro-inflammatory cytokine secretion, and loss of barrier integrity, while it induced a strong increase of Th2 associated cytokines (IL-13/IL-5) in the colon. This effect was accompanied by the accumulation of regulatory T cells (Tregs) and type 2 innate lymphoid cells (ILC2s) in the colon. Depletion of Foxp3+ Tregs during IL-33 treatment in DSS colitis ameliorated the positive effect on the intestinal pathology. Finally, IL-33 expanded ILC2s, which were adoptively transferred to DSS treated mice, significantly reduced colonic inflammation compared to DSS control mice. In summary, our results emphasize that the IL-33/ST2 pathway plays a crucial protective role in colitis by modulating ILC2 and Treg numbers.


2020 ◽  
Author(s):  
Wan-Chung Hu

The global outbreak of COVID-19 has a detrimental impact on public health. COVID-19 is usually manifested as pneumonia which can progress into acute respiratory distress syndrome (ARDS). Currently, we have not yet a very successful therapeutic agent to manage this disease. The most promising drug, Remdesivir, has the effectiveness in 30% of SARS-CoV-2 infected patients. We still need effective agents to treat the coronavirus as well as to treat acute lung injury and other complications caused by this coronavirus. The host immunological pathway against virus is typically a THalpha/beta immune response. The THalpha/beta immunity is triggered by type 1 interferon and interleukin 27. The main effector cells of THalpha/beta immune response is interleukin 10 secreting CD4 T cells, CD8 T cells, NK cells, and IgG1 producing B cells. Besides, interleukin 10 has a potent immunomodulatory or anti-inflammatory effect. In addition, IL-10 is an anti-fibrotic agent to reduce fibrosis. Interleukin 10 can ameliorate acute lung injury or ARDS, especially caused by viruses. The pathogenesis of ARDS is overt immune activation in lung. Thus, I suggest to use interleukin 10 for the possible treatment agent for COVID-19.


2015 ◽  
Vol 11 (2) ◽  
pp. e1004607 ◽  
Author(s):  
Anne-Gaelle Besnard ◽  
Rodrigo Guabiraba ◽  
Wanda Niedbala ◽  
Jennifer Palomo ◽  
Flora Reverchon ◽  
...  

2018 ◽  
Vol 56 (01) ◽  
pp. E2-E89
Author(s):  
K Neumann ◽  
M Schoedsack ◽  
S Steinmann ◽  
A Ochel ◽  
P Breda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document