scholarly journals Optimal Dual-Targeted CAR Construct Simultaneously Targeting Bcma and GPRC5D Prevents Bcma-Escape Driven Relapse in Multiple Myeloma

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 136-136 ◽  
Author(s):  
Carlos Fernandez de Larrea ◽  
Mette Staehr ◽  
Andrea Lopez ◽  
Yunxin Chen ◽  
Terence J Purdon ◽  
...  

Multiple myeloma (MM) remains generally incurable, calling for the development of novel treatment strategies such as chimeric antigen receptor (CAR) T cell therapy. Most clinically tested CAR T cell therapies for MM target B cell maturation antigen (BCMA), but despite high response rates, many patients relapse (Raje N. NEJM 2019). BCMA negative-low MM cells are implicated as a reservoir preceding relapse (Brudno J. JCO 2018; Cohen A. JCI 2019). Our aims are to (1) evaluate whether upfront simultaneous targeting of an additional antigen such as G protein-coupled receptor class C group 5 member D (GPRC5D; Smith EL. Sci Trans Med 2019) can mitigate BCMA escape-mediated relapse in MM, and (2) compare dual targeting strategies to identify an optimal approach. Dual targeting for CD19/CD22 malignancies has been investigated, and multiple approaches are feasible; however, approaches have yet to be comprehensively compared head to head. Here, we compare 2 parallel production and 3 single-vector dual targeting strategies (Fig. 1A). To enhance clinical translatability, all strategies are built on the BCMA(125)/4-1BBζ CAR (BCMA scFv 125; Smith EL. Mol Ther 2018), which is currently under multi-center clinical investigation (NCT03430011; Mailankody S. ASH 2018). We confirmed that all dual targeted approaches lyse, proliferate, and secrete polyfunctional cytokines specifically in response to BCMA and GPRC5D mono- and dual-positive cell lines and/or primary patient MM aspirate samples. Activity in vivo was confirmed using the bone marrow-tropic OPM2 MM model (endogenously BCMA+GPRC5D+). In all experiments MM cells (2 x 106) were injected IV into NSG mice and engrafted/expanded for 14 days before treatment. A high dose of all dual targeted CAR T cell approaches (3 x 106 CAR+) induced long-term disease control (median overall survival (mOS) BCMA(125) non-signaling del control 32d vs other groups mOS not reached; p < 0.05). Prevention of latent BCMA escape-mediated relapse was evaluated by re-challenge of previously treated long-surviving mice with 2 x 106 OPM2 BCMA CRISPR KO (OPM2BCMA KO) cells at day 100 without re-treatment. While mice previously treated with BCMA(125)/41BBζ CAR T cells succumbed to OPM2BCMA KO disease, dual targeted approaches prevented OPM2BCMA KO growth (mOS BCMA mono-targeted arm 37d post re-challenge vs other groups mOS not reached; p < 0.05). To better recapitulate human MM and distinguish among dual targeting approaches, we modeled established BCMA heterogeneous disease by spiking 5-10% OPM2BCMA KO into bulk OPM2WT cells for injection. Each OPM2 population was modified to express distinct luciferases for simultaneous in vivo monitoring by bioluminescent imaging (BLI). Treatment with a moderate (5 x 105) dose of CAR T cells eradicated OPM2WT cells in all groups, but anti-GPRC5D CARs with CD28 co-stimulation, whether included within a mixed T cell population or in a bicistronic construct (Fig. 1A ii, iv), failed to control OPM2BCMA KO cells (Fig. 1B). Correspondingly, 4-1BB-only containing CAR T cells had increased in vivo expansion (2.1-4.1-fold increase CAR T cell BLI at day 7 over CD28 containing groups; p < 0.05). As this result is likely from greater activation-induced cell death in the CD28-containing approaches that was not rescued by 4-1BB, we later compared 4-1BB-only containing approaches (Fig. 1A i, iii, v). These 3 dual targeting approaches effectively controlled OPM2WT disease at moderate (1 x 106 CAR+) and low (2.5 x 105 CAR+) doses. However, when using a sub-therapeutic dose (2.5 x 105 CAR+) in the OPM2BCMA KO-spiked model, the tandem scFv-single stalk design was least effective in controlling OPM2BCMA KO disease (Fig 1C). At a dose that is sub-therapeutic to control OPM2WT disease (1 x 105 CAR+), the bicistronic dual 4-1BB design (Fig. 1A iii) was more effective in eradicating tumor compared with the parallel production approach (6-fold difference tumor BLI at day 28; p < 0.05). These results indicate that upfront dual targeting of BCMA/GPRC5D with CAR T cells can mitigate BCMA escape-mediated relapse in a model of MM. While parallel infusion of separate BCMA- and GPRC5D-targeted CAR T cells is effective, a single bicistronic vector encoding two 4-1BB-containing CARs avoids the practical challenges of parallel manufacturing, and uniquely may provide superior anti-MM efficacy. Figure Disclosures Fernandez de Larrea: Takeda: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria, Research Funding; Janssen: Consultancy, Honoraria; Amgen: Consultancy, Honoraria, Research Funding. Brentjens:JUNO Therapeutics: Consultancy, Patents & Royalties, Research Funding; Celgene: Consultancy. Smith:Celgene: Consultancy, Patents & Royalties, Research Funding; Fate Therapeutics and Precision Biosciences: Consultancy.

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2776-2776
Author(s):  
Salvatore Fiorenza ◽  
George S. Laszlo ◽  
Tinh-Doan Phi ◽  
Margaret C. Lunn ◽  
Delaney R. Kirchmeier ◽  
...  

Abstract Background: There is increasing interest in targeting CD33 in malignant and non-malignant disorders, but available drugs are ineffective in many patients. As one limitation, therapeutic CD33 antibodies typically recognize the membrane-distal V-set domain. Likewise, currently tested CD33-directed chimeric antigen receptor (CAR) T cells likewise target the V-set domain and have thus far shown limited clinical activity. We have recently demonstrated that binding closer to the cell membrane enhances the effector functions of CD33 antibodies. We therefore raised antibodies against the membrane-proximal C2-set domain of CD33 and identified antibodies that bound CD33 regardless of the presence/absence of the V-set domain ("CD33 PAN antibodies"). Here, we tested their properties as targeting moiety in CD33 PAN CAR T cell constructs, using a clinically validated lentiviral backbone. Methods: To generate CAR T cells, negatively selected CD8 + T cells were transduced with an epHIV7 lentivirus encoding the scFv from a CD33 PAN antibody (clone 1H7 or 9G2) linked to either a short (IgG 4 hinge only), intermediate (hinge plus IgG 4 CH3 domain), or long (hinge plus IgG 4 CH3 domain plus IgG 4 CH2 domain) spacer, the CD28-transmembrane domain, CD3zeta and 4-1BB intracellular signaling domains, and non-functional truncated CD19 (tCD19) as transduction marker. Similar constructs using scFvs from 2 different V-set domain-targeting CD33 antibodies, including hP67.6 (My96; used in gemtuzumab ozogamicin), were generated for comparison. CAR-T cells were sorted, expanded in IL-7 and IL-15, and used in vitro or in vivo against human AML cell lines endogenously expressing CD33 and cell lines engineered to lack CD33 (via CRISPR/Cas9) with/or without forced expression of different CD33 variants. Results: CD33 V-set-directed CAR T cells exerted significantly more cytolytic activity against AML cells expressing an artificial CD33 variant lacking the C2-set domain (CD33 ΔE3-4) than cells expressing full-length CD33 at similar or higher levels, consistent with the notion that CD33 CAR T cell efficacy is enhanced when targeting an epitope that is located closer to the cell membrane. CD33 PAN CAR T cells were highly potent against human AML cells in a strictly CD33-dependent fashion, with constructs containing the short and intermediate-length spacer demonstrating robust cytokine secretion, cell proliferation, and in vitro cytolytic activity, as determined by 51Cr release cytotoxicity assays. When compared to optimized CD33 V-set CAR T cells, optimized CD33 PAN CAR T cells were significantly more potent in cytotoxicity, proliferation, and cytokine production without appreciably increased acquisition of exhaustion markers. In vivo, CD33 PAN CAR T cells extended survival in immunodeficient NOD.SCID. IL2rg -/- (NSG) mice bearing significant leukemic burdens from various cell line-derived xenografts (HL-60, KG1α and MOLM14) with efficient tumor clearance demonstrated in a dose-dependent fashion. Conclusion: Targeting the membrane proximal domain of CD33 enhances the anti-leukemic potency of CAR T cells. Our data provide the rationale for the further development of CD33 PAN CAR T cells toward clinical testing. Disclosures Fiorenza: Link Immunotherapeutics: Consultancy; Bristol Myers Squibb: Research Funding. Godwin: Pfizer: Research Funding; Bristol Myers Squibb: Current Employment, Current equity holder in publicly-traded company. Turtle: Allogene: Consultancy; Amgen: Consultancy; Arsenal Bio: Consultancy; Asher bio: Consultancy; Astrazeneca: Consultancy, Research Funding; Caribou Biosciences: Consultancy, Current holder of individual stocks in a privately-held company; Century Therapeutics: Consultancy, Other; Eureka therapeutics: Current holder of individual stocks in a privately-held company, Other; Juno therapeutics/BMS: Patents & Royalties, Research Funding; Myeloid Therapeutics: Current holder of individual stocks in a privately-held company, Other; Nektar therapeutics: Consultancy, Research Funding; PACT Pharma: Consultancy; Precision Biosciences: Current holder of individual stocks in a privately-held company, Other; T-CURX: Other; TCR2 Therapeutics: Research Funding. Walter: Kite: Consultancy; Janssen: Consultancy; Genentech: Consultancy; BMS: Consultancy; Astellas: Consultancy; Agios: Consultancy; Amphivena: Consultancy, Other: ownership interests; Selvita: Research Funding; Pfizer: Consultancy, Research Funding; Jazz: Research Funding; Macrogenics: Consultancy, Research Funding; Immunogen: Research Funding; Celgene: Consultancy, Research Funding; Aptevo: Consultancy, Research Funding; Amgen: Research Funding.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 217-217 ◽  
Author(s):  
Shannon L Maude ◽  
David M. Barrett ◽  
Susan R. Rheingold ◽  
Richard Aplenc ◽  
David T Teachey ◽  
...  

Abstract Background Targeted immunotherapy with CTL019, CD19-specific chimeric antigen receptor (CAR)-modified T cells, can produce potent and sustained responses in children with relapsed/refractory acute lymphoblastic leukemia (ALL). However, a subset of patients has limited persistence, which can increase the risk of relapse. Most CAR single chain variable fragment (scFv) domains, including that of CTL019, are of murine origin; therefore, anti-mouse reactivity is one potential cause of immune-mediated rejection that may be overcome by fully human or humanized CAR designs. We developed a humanized anti-CD19 scFv domain and now report on treatment with humanized CD19-directed CAR T cells (CTL119). Design A pilot/phase 1 study of CAR-modified T cells containing a humanized anti-CD19 scFv domain (CTL119) enrolled children and young adults with relapsed/refractory B-ALL with or without prior exposure to a CAR T cell product. Patients previously treated with CD19-specific CAR-modified T cells were eligible if they met 1 of 3 criteria: 1) CD19+ relapse 2) no response to prior CAR T cell therapy or 3) early B cell recovery indicating poor persistence of CAR T cells. Patient-derived T cells were transduced ex vivo with a lentiviral vector encoding a CAR composed of CD3z, 4-1BB, and humanized anti-CD19 scFv domains and activated/expanded with anti-CD3/CD28 beads. The humanized scFv domain was developed by grafting the complementary determining regions of both the heavy and light chains onto human germline acceptor frameworks. Patients received lymphodepletion with cyclophosphamide and fludarabine 1 week prior to infusion with CTL119. Results Thirty children and young adults aged 29 mo-24 yr were infused with CTL119. Eighteen patients had received prior allogeneic stem cell transplant (SCT). Eleven patients who previously received murine-derived CD19-specific CAR-modified T cells (CTL019, n=7; other, n=4) were retreated for B cell recovery (n=5), CD19+ relapse (n=5), or no response to prior CAR T cells (n=1). CNS disease or other extramedullary disease was the indication for enrollment in 6 and 3 patients, respectively. At assessment 1 month after infusion, 26/30 patients (87%) achieved a complete response (CR), defined as morphologic remission with B cell aplasia. Of 11 patients previously treated with murine CD19-specific CAR-modified T cells, 7 (64%) achieved a CR at 1 month, 4 demonstrated no response. Multiparameter flow cytometry for minimal residual disease (MRD) was negative at a detection level of 0.01% in 5/7 responding patients. Two responding patients with positive MRD progressed to CD19+ relapse at 1.6 and 3 mo. In patients with no prior exposure to a CD19 CAR T cell product, MRD-negative CR was achieved in 19/19 patients (100%). One patient relapsed with CD19+ extramedullary disease at 2.8 mo. With a median follow-up of 4.2 mo (range, 1.0-14.1 mo) for all responding patients in both cohorts, 23/26 remain in remission with 1 proceeding to SCT in remission. B cell aplasia, a functional marker of CD19-targeted CAR T cell persistence, continued for 3 months or more in 11/18 patients with adequate follow-up: 1/6 retreatment, 10/12 CAR-naïve. Cytokine release syndrome (CRS) was observed in 28/30 patients and mild in most patients (grade 1, n=6; grade 2, n=18). Three patients experienced grade 3 CRS requiring supplemental oxygen or low-dose vasopressor support and 1 experienced grade 4 CRS requiring high-dose vasopressor and ventilatory support. Severe CRS was successfully managed with the IL6R antagonist tocilizumab in 3 patients. Neurologic toxicity included encephalopathy (n=5) and seizure (n=4) and was fully reversible. Conclusion In the first study of humanized anti-CD19 CAR T cells, CTL119 induced remissions in children and young adults with relapsed/refractory B-ALL, including 64% of patients previously treated with murine CD19-directed CAR T cells and 100% of CAR-naïve patients. Further investigation into CAR T cell persistence and anti-CAR responses will be vital to improve durable remission rates in this highly refractory population. Disclosures Maude: Novartis: Consultancy. Barrett:Novartis: Research Funding. Teachey:Novartis: Research Funding. Shaw:Novartis: Research Funding; Vitality Institute: Research Funding. Brogdon:Novartis: Employment. Scholler:Novartis: Patents & Royalties: Royalties, Research Funding. Marcucci:Novartis: Research Funding. Levine:GE Healthcare Bio-Sciences: Consultancy; Novartis: Patents & Royalties, Research Funding. Frey:Amgen: Consultancy; Novartis: Research Funding. Porter:Novartis: Patents & Royalties, Research Funding; Genentech: Employment. Lacey:Novartis: Research Funding. Melenhorst:Novartis: Research Funding. June:Novartis: Honoraria, Patents & Royalties, Research Funding; Celldex: Consultancy, Equity Ownership; Pfizer: Honoraria; Immune Design: Consultancy, Equity Ownership; Johnson & Johnson: Honoraria; Novartis: Honoraria, Patents & Royalties, Research Funding; Tmunity Therapeutics: Equity Ownership. Grupp:Pfizer: Consultancy; Jazz Pharmaceuticals: Consultancy; Novartis: Consultancy, Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1727-1727
Author(s):  
Sherly Mardiana ◽  
Olga Shestova ◽  
Stephan A. Grupp ◽  
Marco Ruella ◽  
David M. Barrett ◽  
...  

Abstract BACKGROUND Chimeric antigen receptor (CAR) T cell therapy has revolutionized the treatment of relapsed/refractory B-cell malignancies, as highlighted by high complete remission rates and FDA approval of CD19-specific CAR T cell products. However, depth and duration of remission are limited by antigen loss/downregulation on tumors, as observed in clinical trials using CAR T cells targeting the CD19 or CD22 in leukemia and lymphoma, BCMA in multiple myeloma, and EGFRvIII in glioblastoma. This observation forms the basis of current efforts to develop multi-targeting CAR T cells to prevent antigen-negative escape. Antigen density is an important factor modulating CAR T cell response, since antigen expression below a certain threshold fails to trigger the full range of T cell functions. Given that signal strength induced upon antigen encounter determines CAR T cell activity, we hypothesized that simultaneous targeting of two dimly-expressed antigens will result in enhanced CAR T cell signaling and anti-tumor function, approaching that seen in response to one highly-expressed antigen. This is important given the heterogeneity of antigen expression in various cancers. Therefore, the bi-specific CAR T cells currently being developed to prevent antigen-negative escape could also be used to enhance efficacy against low antigen density (LAD) tumors. Results from this study will provide a novel rationale for using multi-specific CAR T cells and illuminate the mechanisms of successful CAR T cell therapy. METHODS Lentivirus transduction was performed to generate CAR T cells from healthy human T cells, using second generation 4-1BBz CARs specific for either human CD19 or CD22, or both in cis, herein referred to as CAR19, CAR22, or CAR19/22, respectively (Figure 1A). For in vitro functional characterization, we performed co-culture assay of T cells and B cell leukemia cell line NALM6, which is known to express high levels of both CD19 and CD22. To assess T cell function against LAD tumor cells, primary patients' B-ALL samples expressing low antigen density in comparison to the NALM6 cell line were used (Figure 1B). CAR T cell anti-tumor potency was determined by assessing CAR T cell cytotoxicity and cytokine production. For in vivo therapeutic study, primary patients' B-ALL samples with dimly expressed CD19 and CD22 were used to evaluate and compare the therapeutic efficacy of mono- versus bi-specific CAR T cells. Additionally, we generated a LAD tumor model by deleting the highly expressed CD19 and CD22 from the ALL cell line NALM6 using CRISPR/Cas9, transducing the now antigen-negative cell line with CD19 and CD22, followed by single cell cloning to generate a cell line expressing low antigen density for both the CD19 and CD22. We engrafted tumor cells in NSG mice, followed by administration of CAR19, CAR22, CAR19/22 or untransduced T cells. Therapeutic efficacy was assessed by measuring tumor burden using either flow cytometry or bioluminescent imaging. RESULTS Cytotoxicity assay revealed that the bi-specific CAR19/22 T cells killed tumor cells more rapidly than CAR19 or CAR22 T cells. Further, compared to mono-specific CAR T cells, the bi-specific CAR19/22 T cells produced significantly more pro-inflammatory cytokines including IL-2 and IFNg, in response to stimulation with LAD primary samples or NALM6 cells. This increased cytokine-producing capacity compared to mono-specific CAR T cells was maintained following repeated antigen stimulation when in vitro exhaustion assay was performed. In vivo, enhanced tumor elimination was observed in mice receiving bi-specific CAR19/22 T cells compared to either of the mono-specific CAR T cells, in both low antigen density primary ALL and NALM6 tumor models. This translated to increased survival rates seen in mice treated with the bi-specific CAR19/22 T cells (Figure 1C-D). CONCLUSIONS Here we showed that bi-specific CAR19/22 T cells are superior to mono-specific CAR19 or CAR22 T cells, not only against LAD tumors but also tumor cells expressing high antigen density, NALM6. This was demonstrated by their enhanced cytokine-producing function, cytotoxic capacity, and therapeutic efficacy in vivo. Results from this study provide a novel rationale for repurposing multi-specific CAR T cells as a strategy to improve efficacy against LAD tumors, in addition to the recognized benefit of reducing antigen-negative escape. Figure 1 Figure 1. Disclosures Shestova: Hemogenyx Pharmaceuticals LLC: Research Funding. Grupp: Novartis, Roche, GSK, Humanigen, CBMG, Eureka, and Janssen/JnJ: Consultancy; Novartis, Kite, Vertex, and Servier: Research Funding; Novartis, Adaptimmune, TCR2, Cellectis, Juno, Vertex, Allogene and Cabaletta: Other: Study steering committees or scientific advisory boards; Jazz Pharmaceuticals: Consultancy, Other: Steering committee, Research Funding. Ruella: viTToria biotherapeutics: Research Funding; Novartis: Patents & Royalties; BMS, BAYER, GSK: Consultancy; AbClon: Consultancy, Research Funding; Tmunity: Patents & Royalties. Gill: Novartis: Other: licensed intellectual property, Research Funding; Interius Biotherapeutics: Current holder of stock options in a privately-held company, Research Funding; Carisma Therapeutics: Current holder of stock options in a privately-held company, Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 480-480
Author(s):  
Anthony M Battram ◽  
Aina Oliver-Caldés ◽  
Miquel Bosch i Crespo ◽  
María Suárez-Lledó ◽  
Miquel Lozano ◽  
...  

Abstract Background: Autologous chimeric antigen receptor-T (CAR-T) cells that target BCMA (BCMA-CARs) have emerged as a promising treatment for multiple myeloma (MM). Current clinical protocols dictate that BCMA-CAR therapy is only used after patients have repeatedly relapsed. However, at this stage, the immunosuppressive nature of advanced MM and/or side-effects of the previous therapies cause T cell dysfunction and an unfavourable phenotype, such as exhaustion, senescence and loss of early memory cells. An alternative and convenient pool of 'fitter' T cells are apheresis products that are routinely collected to obtain progenitor cells for autologous stem cell transplantation (ASCT), an intervention that is often carried out early in MM treatment. However, to mobilise the progenitor cells, patients are treated with G-CSF, which could have negative effects on T cells such as reduce proliferation, impair CD8 + T cell function and induce regulatory T cell (Treg) expansion. Whether this has an effect on the BCMA-CARs generated from these T cells, however, is unknown. Therefore, we aimed to establish whether G-CSF treatment had detrimental effects on T cell phenotype, and moreover, to ascertain whether BCMA-CARs that are generated from these T cells were impaired compared to those produced from T cells prior to G-CSF infusion. Methods: T cells were isolated from the blood of 9 patients with MM before and after 4 days of subcutaneous G-CSF administration (PRE G-CSF and POST G-CSF, respectively) prior to peripheral blood CD34 + cell harvesting for an ASCT as consolidation after first-line induction treatment. Following stimulation with anti-CD3/anti-CD28 beads and IL-2, T cells were transduced with ARI2h, an anti-BCMA CAR produced at our institution that is currently being explored in a clinical trial for relapsed/refractory MM (NCT04309981). Freshly-isolated T cells or expanded ARI2h cells were analysed by flow cytometry for markers of cell identity, activation, dysfunction and memory, or alternatively, challenged with an MM cell line (ARP-1 or U266) and then tested for cytokine production and cytotoxic ability. In addition, PRE and POST G-CSF ARI2h CARs were injected into ARP-1 tumour-bearing mice to assess their in vivo function. Results: Firstly, the phenotype of PRE G-CSF and POST G-CSF T cells, before CAR production, was analysed to identify effects of G-CSF treatment. Interestingly, there were fewer POST G-CSF CD8 + T cells with a stem cell memory (CCR7 +CD45RA +CD95 +) phenotype, but the proportion of naïve (CCR7 +CD45RA +CD95 -) cells and other memory populations was not significantly different. Moreover, POST G-CSF T cells had a lower CD4:CD8 ratio, but did not contain more senescent-like cells or display evidence of pre-activation or increased expression of exhaustion markers. Due to the known effect of G-CSF on CD4 + Treg expansion, the percentage of Tregs was also compared between the PRE G-CSF and POST G-CSF samples, but no difference was observed. Following T-cell activation and CAR transduction, comparable transduction efficiencies and proliferation rates were obtained. Likewise, the in vitro function of PRE G-CSF and POST G-CSF ARI2h cells, as determined by assessing their cytotoxic response to MM cell lines and ability to produce effector molecules such as granzyme B, was similar. To test the in vivo function of ARI2h CAR-T cells expanded from PRE G-CSF and POST G-CSF samples, they were injected into a murine xenograft model of advanced MM. Mice administered with both PRE and POST G-CSF ARI2h cells survived longer than those given untransduced T cells (p=0.015 and p=0.039, respectively), but there was no difference in the longevity of mice between the PRE G-CSF and POST G-CSF groups (p=0.990) (Figure 1). The similarity of the in vitro and in vivo function of PRE and POST G-CSF ARI2h cells was reflected in the phenotype of the CAR-T cells after ex vivo expansion, with cells from both groups displaying equal levels of activation, exhaustion, and importantly for CAR-T cell activity, memory/effector phenotype. Conclusions: The in vitro and in vivo functions of ARI2h CAR-T cells when generated from either PRE G-CSF or POST G-CSF samples were comparable, despite G-CSF administration decreasing the CD8 + stem cell memory pool. Overall, we conclude that T cells from apheresis products, performed to collect G-CSF-mobilised peripheral blood progenitor cells for ASCT, are suitable for BCMA-CAR manufacture. Figure 1 Figure 1. Disclosures Lozano: Grifols: Honoraria; Terumo BCT: Honoraria, Research Funding; Macopharma: Research Funding. Fernandez de Larrea: BMS: Consultancy, Honoraria, Research Funding; Amgen: Consultancy, Honoraria, Research Funding; Takeda: Honoraria, Research Funding; GSK: Honoraria; Sanofi: Consultancy; Janssen: Consultancy, Honoraria, Research Funding.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 3-4
Author(s):  
Julio C. Chavez ◽  
Frederick L. Locke ◽  
Ellen Napier ◽  
Carl Simon ◽  
Andrew Lewandowski ◽  
...  

Background: Tisagenlecleucel (tisa-cel), an autologous anti-CD19 chimeric antigen receptor (CAR)-T cell therapy, has demonstrated durable responses and a manageable safety profile in adult patients (pts) with relapsed/refractory diffuse large B-cell lymphoma (r/r DLBCL). It has previously been suggested that prior therapy with ibrutinib, a Bruton's tyrosine kinase (BTK) inhibitor, may improve tisa-cel manufacturing, in vivo cellular kinetics, and antitumor efficacy (Fraietta et al. Blood. 2016). Moreover, since BTK signaling is involved in direct pro-inflammatory polarization of macrophages, as well as indirectly by T cells, it is hypothesized that ibrutinib may mitigate CAR-T cell-related toxicities such as cytokine release syndrome (CRS) and neurological events (NE). We report the initial results from a Phase Ib, multicenter, open-label trial evaluating the safety and tolerability of tisa-cel in combination with ibrutinib in adult pts with r/r DLBCL. Methods: Adult pts with r/r DLBCL who received >2 prior lines of systemic therapy, including pts who progressed after or were ineligible for autologous stem cell transplant, were enrolled. The study design has 2 nonrandomized arms. In Arm 1, pts received ibrutinib 560 mg/d for ~4 weeks prior to leukapheresis; in Arm 2, pts were exposed to ibrutinib after leukapheresis. In both arms, ibrutinib was continued throughout lymphodepleting chemotherapy, tisa-cel infusion, and post infusion for up to 24 months. Lymphodepleting chemotherapy, ending at least 2 days before tisa-cel infusion, was either fludarabine (25 mg/m2) and cyclophosphamide (250 mg/m2) daily for 3 days or bendamustine (90 mg/m2) daily for 2 days. Pts received a single infusion of tisa-cel (target dose: 0.6-6.0×108 viable CAR+ T cells). Primary endpoints are incidence and severity of adverse events and ibrutinib dose interruptions/modifications. Secondary endpoints include best overall response (BOR) by Lugano criteria and cellular kinetics of tisa-cel. Results: As of June 9, 2020, 10 pts have been treated and observed through at least the Day 28 assessment: 4 in Arm 1 and 6 in Arm 2. Median age was 59 (range, 32-67) in Arm 1 and 64 (range, 58-76) in Arm 2. Median number of prior therapies was 3.5 (range, 2-5) in Arm 1 and 2 (range, 2-3) in Arm 2. Three of 10 pts (Arm 1, n=1; Arm 2, n=2) had an activated B-cell-like subtype of DLBCL. Six of 10 pts (Arm 1, n=1; Arm 2, n=5) had grade 1 CRS (by Lee scale) and 1 pt had NE (Arm 2, grade 1 by ASTCT criteria; Table). One pt in Arm 2 had grade 3 neutropenia lasting >28 days post tisa-cel infusion. No other pts had grade 3 or 4 neutropenia or thrombocytopenia lasting >28 days. No major bleeding events were observed. Ibrutinib-related bradycardia and atrial fibrillation (both grade 2) were each observed in 1 pt in Arm 1; supraventricular tachycardia (grade 1) related to tisa-cel was observed in 1 pt in Arm 2. No pt required tocilizumab or ICU admission. As of data cutoff, BOR in Arm 1 was complete response (CR) in 2 pts and partial response (PR) in 2 pts, with no relapses. BOR in Arm 2 was CR in 2 pts, PR in 1 pt, and progressive disease in 3 pts (Table). CAR-T cell expansion in vivo by qPCR was in line with data from the pivotal JULIET trial, except for 1 pt in Arm 2 whose transgene levels were below the limit of quantification at all points in time and who progressed at Day 28. Median viability of the leukapheresis material was 96.80% (range, 88.8-97.3) in Arm 1 and 90.95% (range, 88.1-94.7) in Arm 2. A naïve/stem cell-like central memory phenotype (CD45RA+/CCR7+) was observed in 24.05% (median; range, 15.9-37.0) of CD8+ T cells in the leukapheresis material for Arm 1 and in 8.12% (median; range, 1.3-20.4) for Arm 2 (Fig.1A). Fig.1B shows total CAR+ manufactured cells in each arm. The median dose of the final product was 3.9×108 CAR+ T cells in Arm 1 (range, 3.4-4.6×108 CAR+ T cells; median viability 92.25%) and 1.7×108 CAR+ T cells in Arm 2 (range, 1.2-3.0×108 CAR+ T cells; median viability 85.8%; Fig.1C). IFNγ secretion of tisa-cel in vitro in response to CD19+ target cells was similar between the 2 arms, whereas median normalized IL-2 responses were 23.1 fg/CAR+ cell in Arm 1 (range, 16.7-43.8) and 1.1 fg/CAR+ cell in Arm 2 (range, 0-17.3). Conclusions: These results support the feasibility of administering ibrutinib to pts with DLBCL throughout tisa-cel therapy. When given before apheresis, ibrutinib may improve CAR-T cell manufacturing, although further studies are needed to confirm this finding. Disclosures Chavez: AstraZeneca: Speakers Bureau; Morphosys: Consultancy, Speakers Bureau; Merck: Research Funding; Bayer: Consultancy; BeiGene: Speakers Bureau; Karyopharm: Consultancy; Genentech: Speakers Bureau; AbbVie: Consultancy; Epizyme: Speakers Bureau; Gilead: Consultancy; Celgene: Consultancy; Novartis: Consultancy; Kite, a Gilead Company: Consultancy, Speakers Bureau; Verastem: Consultancy; Pfizer: Consultancy. Locke:Kite, a Gilead Company: Consultancy, Research Funding; Calibr: Consultancy; Celgene/Bristol-Myers Squibb: Consultancy; Novartis: Consultancy; GammaDelta Therapeutics: Consultancy; Cellular Biomedicine Group: Other: Consultancy with grant options; Allogene: Consultancy; Wugen: Consultancy. Simon:Novartis: Current Employment. Lewandowski:Novartis Institutes for BioMedical Research: Current Employment. Awasthi:Novartis Institutes for BioMedical Research: Current Employment. Engels:Novartis Institutes for BioMedical Research: Current Employment. Georgala:Novartis Pharmaceuticals Corporation: Current Employment. Bondanza:Novartis Institutes for BioMedical Research: Current Employment. Schuster:AlloGene, AstraZeneca, BeiGene, Genentech, Inc./ F. Hoffmann-La Roche, Juno/Celgene, Loxo Oncology, Nordic Nanovector, Novartis, Tessa Therapeutics: Consultancy, Honoraria; Novartis, Genentech, Inc./ F. Hoffmann-La Roche: Research Funding.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 805-805
Author(s):  
Cameron J. Turtle ◽  
Kevin A. Hay ◽  
Laila-Aicha Hanafi ◽  
Juliane Gust ◽  
W. Conrad Liles ◽  
...  

Abstract CD19 chimeric antigen receptor (CAR)-modified T cell therapy has produced impressive results in patients (pts) with CD19+B cell malignancies; however, treatment can be complicated by neurologic adverse events (AEs). The presentation and pathogenesis of neurotoxicity (NT) are incompletely understood. We report a clinical and pathologic study evaluating NT in 133 B-ALL, NHL and CLL pts treated with lymphodepletion chemotherapy and CD19 CAR-T cells (NCT01865617). Neurologic AEs were observed in 53 of 133 pts (40%; 19% grade [gr] 1-2; 16% gr 3; 2% gr 4; 3% gr 5). Most neurologic AEs were reversible. Delirium, headache, and language disturbances were the most frequently observed neurologic AEs, presenting in 66%, 55%, and 34% of pts with NT, respectively. Multivariable analysis showed that higher burden of malignant B cells in marrow, lymphodepletion with cyclophosphamide and fludarabine, and higher infused CAR-T cell dose were associated with increased risk of NT and cytokine release syndrome (CRS). The severity of NT correlated with higher peak concentrations of cytokines that may activate endothelial cells (EC), such as IL-6, IFN-γ, and TNF-α. Pts who developed gr ≥3 NT had more severe CRS with higher CAR-T cell counts in blood and evidence of vascular dysfunction. In severe NT, hypofibrinogenemia with elevated PT, aPTT, and d-dimer were consistent with EC activation. We confirmed in vivo EC activation during NT by demonstrating high concentrations of serum angiopoietin-2 (Ang-2) and von Willebrand Factor (VWF), which are released from Weibel-Palade bodies on EC activation. In vitro, serum from pts with NT induced activation and VWF release from human umbilical vein ECs (HUVECs), which suggests that the finding of a reduced fraction of high molecular weight VWF multimers in vivo during gr ≥4 NT results from consumption on platelets and sequestration on activated EC. Consistent with this explanation, we found reduced activity of the VWF-cleaving protease ADAMTS13 relative to VWF levels and more severe thrombocytopenia in pts with gr ≥4 NT. We considered that cytokine-induced EC activation might alter the integrity of the blood-brain barrier (BBB) during NT. During severe NT, CSF analyses demonstrated increased permeability of the BBB to protein and leukocytes, including CAR-T cells. The gradient between serum and CSF cytokines observed before lymphodepletion was lost during acute NT, consistent with inability of the BBB to shield the CNS from high concentrations of plasma cytokines. Brain vascular pericytes (BVP) play a critical role in vascular and BBB support, and when exposed to high TNF-α or IFN-γ concentrations BVP exhibited stress (increased cleaved caspase-3 and reduced PDGFRβ) and secreted IL-6 and VEGF, further promoting EC activation and BBB permeability. Neuropathologic examination of the brain of a patient with fatal NT demonstrated disrupted endothelium by CD31 immunohistochemistry and EC activation was confirmed by intravascular VWF binding and CD61+ platelet microthrombi. Further evidence of breach of the BBB included red blood cell extravasation from multiple vessels, vascular lesions with karyorrhexis, perivascular CD8+ T cell infiltration, and fibrinoid vessel wall necrosis. CAR-T cells were detected in the CNS. We investigated strategies to reduce the risks of severe NT. Logistic probability curves demonstrated that reduction in CAR-T cell dose to reduce the peak in vivo CAR-T cell blood count was associated with reduced risk of NT, but that the narrow therapeutic index of this approach would lead to loss of anti-tumor efficacy. To maintain CAR-T cell peak counts in blood, we developed a strategy to identify pts early after CAR-T cell infusion who might be at risk of subsequent severe NT and could be candidates for early intervention. Classification tree modeling demonstrated that in the first 36 hours after CAR-T cell infusion pts with fever ≥38.9°C, serum IL-6 ≥16 pg/mL, and MCP-1 ≥1343.5 pg/mL were at high risk of subsequent gr ≥4 NT (sensitivity 100%; specificity 94%). We also investigated whether pts with pre-existing endothelial activation were at higher risk of NT. Before lymphodepletion, pts who developed gr ≥4 NT had higher Ang-2:Ang-1 ratios than those with gr ≤3 NT, indicating that endothelial activation before lymphodepletion or CAR-T cell infusion may be a risk factor for NT that identifies pts who would benefit from a modified treatment regimen. Disclosures Turtle: Adaptive Biotechnologies: Other: Advisory board; Bluebird Bio: Other: Advisory board; Gilead Sciences: Other: Advisory board; Precision Biosciences: Other: Advisory board; Celgene: Other: Advisory board; Juno Therapeutics: Other: Advisory board, Patents & Royalties, Research Funding. Liles: Juno Therapeutics: Consultancy, Other: Advisory board. Li: Juno Therapeutics: Employment, Equity Ownership. Yeung: Gilead: Research Funding. Riddell: Juno Therapeutics: Equity Ownership, Patents & Royalties, Research Funding. Maloney: Celgene: Other: Advisory board; Kite Pharmaceuticals: Other: Advisory board; Juno Theraapeutics: Other: Advisory board, Patents & Royalties, Research Funding; Roche/Genetech: Other: Advisory board.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 812-812 ◽  
Author(s):  
Xiuli Wang ◽  
Ryan Urak ◽  
Miriam Walter ◽  
Lihong Weng ◽  
Laura Lim ◽  
...  

Abstract Multiple myeloma (MM) is an incurable malignancy of plasma cells even with great advances in treatment. Chimeric Antigen Receptor (CAR) directed T cell therapy, which can specifically recognize tumor associated antigens and kill tumor cells in an MHC independent manner, is a promising approach for hematological malignancy. There are several candidate antigens for CAR T cell targeting of multiple myeloma, including BCMA and CS1. Our goal is to develop novel CARs for the treatment of MM and explore the potential benefits of combinatorial therapy of CAR T cells and immunomodulatory drugs (IMiDs) such as lenalidomide. In the present study, we redirected central memory T cells to express second-generation CARs specific for either CS1 or BCMA that incorporate CD28 signaling moieties. Central memory T cells were activated by CD3/CD28 bead stimulation, transduced with lentivirus encoding the CAR construct, and expanded ex vivo. The engineered and expanded CS1 and BCMA CAR T cells exhibited similar phenotypes and comparable in vitro effector function. However, once adoptively transferred into MM tumor-bearing NOD/Scid IL2RγCnull (NSG) mice by intravenous injection of 1x10^6 CAR T cells, CS1 CAR T cells exhibited superior antitumor activity over BCMA CART cells and significantly prolonged mouse survival (P<0.01). To further improve the anti-MM activity of CAR T cell therapy, we investigated the effects of lenalidomide on CS1 CAR T cell function against MM. Central memory T cells were activated and transduced with lentivirus encoding CS1 CAR and then expanded in vitro in the presence of 0, 1 or 10mM lenalidomide for 3-4 weeks and then effector function was evaluated. We found that CD8+ CAR T cells were preferentially expanded over CD4+ CAR T cells in a dose-dependent manner. Lenalidomide-treated CAR T cells secreted higher levels of Th1 cytokines such as IFN-gamma, TNF-alpha, and IL-2, but reduced Th2 cytokines such as IL-4 and IL-10 upon antigen stimulation as compared with untreated CAR T cells. Meanwhile we observed that lenalidomide greatly improved the maintenance of T cell memory markers (CD62L, CD28, and CD27) in the culture and enhanced the formation of immune synapses between CAR T cells and MM cells. RNA-seq analysis revealed that more than 600 genes were differentially expressed among the lenalidomide treated and un-treated CD8+CAR+ T cells. Among those, expression of immune synapse related genes such as cell junction and biological assembly is significantly increased with lenalidomide treatment. Moreover, lenalidomide results in elevated gene transcrips characteristic of memory, homing and cytolytic function of CAR T cells. To test the synergistic effects, MM bearing mice were treated with a single infusion of 1x10^6 CS1 CAR T cells (i.v) on day 0 and/or 5-7.5mgkg-1 of lenalidomide daily (i.p.) initiating on day 0 for 30 days. CS1 CAR T cells and lenalidomide exhibited synergistic anti-MM activity in vivo when MM mice received combinatorial treatment. The combination therapy significantly inhibited tumor growth in vivo, prolonged mouse survival (P<0.01) and improved CAR T cell persistence in mice as compared to single-agent treatment. Taken together, these findings indicate that lenalidomide plays a co-stimulatory role in immune modulation of CAR T cells and strengthens the anti-tumor activity of CS1 CAR T cells in vivo. Rational combination of these immunotherapeutic regimens is an effective strategy and the planned clinical trial will use a combination of lenalidomide and CS1 CAR T cells for increasing treatment efficacy. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4537-4537
Author(s):  
Robin Sanderson ◽  
Arantxa Romero-Toledo ◽  
John G. Gribben

Abstract Background: The first two autologous CD19 chimeric antigen receptor T (CAR T) cells targeting CD19 have now been approved for the treatment of ALL and refractory lymphomas. Despite impressive responses in these diseases, results remain inconsistent in chronic lymphocytic leukaemia (CLL). It is unknown if this reflects CAR design or an effect of the underlying function of CLL T cells. These 2nd generation CAR T cells require CD28 or 41BB co-stimulatory signalling domains, but these have not been compared directly in humans. Pre-clinical models afford the opportunity to do this, however, modelling of CAR T cells has mostly been performed in vitro or using immunodeficient mice, limiting the ability to study more complex immune biology. CLL is associated with a tumour supportive microenvironment and T cells exhibit multiple functional defects and features of exhaustion. These T cell defects in CLL are closely recapitulated in Eμ-TCL1 (TCL1) mice, and induced in healthy mice by adoptive transfer (AT) of murine CLL cells. We aimed to demonstrate the effect of CLL T cell dysfunction on CAR T cell efficacy and compare CD28 and 41BB directly. Methods: Immunocompetent C57BL/6 mice (WT) received AT of pooled 20 x106 TCL1 cells from fully leukemic TCL1 mice from the same background. Syngeneic donor CAR T cells were either pooled spleens from WT mice or WT mice given AT CLL with CLL load >80%. Both groups were aged matched (approx. 3 months). Splenoctyes were enriched for CD3+ with magnetic beads then activated with anti CD3/CD28 Dynabeads (Thermofisher) and rIL-2 (Roche). They were transduced with retroviral supernatant from either SFG-m19BBmZ-GFP (CD19-41BB) or MSGV-1D3-28Z-1.3mut (CD19-CD28) and cultured for 4 days when they were injected into 48 mice in total. Mice were given 100mg/kg intraperitoneal cyclophosphamide on D-1 followed by 6-8 x106 CAR T cells (or untransduced T cells). Mice were bled weekly to assess CLL load and T cell subsets and were culled when they appeared sick or peripheral blood (PB) CLL>70%. Results: CAR T cells derived from WT and AT T cells exhibit different phenotypes. WT CAR T cells proliferate more readily in culture and exhibit significantly higher transduction efficiencies in the CD8 subset although CD4 transduction is preserved. Following activation and transduction WT CAR T cells have a CD4: CD8 ratio of 1:1 whilst those from AT are heavily skewed to CD8. In both groups >90% T cells are CD44+. PD1+ expression in both CD4 and CD8 subsets is significantly higher in AT compared to WT CAR T cells. Mice treated with the CD19 -41BB CAR derived from WT and AT T cells or untransduced T cells did not respond, whereas 100% of mice treated with CD19-CD28 CAR derived from WT T cells had a complete response with loss of normal B cells 1 week post CAR T cells injection compared to 50% of mice treated with CD19-CD28 from AT T cells. All non-responding mice were culled at week 8 due to progressive leukaemia as were control mice treated with untransduced T cells. All mice with an established response had a continued complete response for 5 weeks following CAR T cell injection. Half of these mice were culled for phenotypic comparison and the other half observed for survival analysis. Those mice that responded and culled at week 8 had equal spleen size (0.1g) to age matched WT mice controls whilst non-responding mice had significantly larger spleens (0.5-3.3g). CAR T cells were only detectable in the PB +1 week post injection. In the PB there was restoration of CD4: CD8 ratios in responding mice compared to leukemic mice. PD1 expression in the spleen and bone marrow in CD3+CD8+ and CD4+ T cells normalised in responding mice compared to non-responding mice. Conclusion: AT of TCL1 CLL into immunocompetent mice is a viable model to study in vivo CAR T cell function and the host immune response. CAR T cells derived from WT T cells lead to a complete response in all of the mice but this response is significantly reduced if T cells exposed to CLL are used. Time to relapse for these responding mice has not been reached. We postulate that failure of the CD19 -41BB CAR in vivo relates to rejection of the GFP construct. There are significant differences in PD1 expression between WT and AT derived CAR T cells, which suggest strategies to repair exhausted T cells may improve the clinical response to CAR T cells in CLL. This provides the rationale for our on going studies of PD1/PDL1 blocking drugs in combination with CAR T cells in this immunocompetent pre-clinical model. Disclosures Gribben: Medical Research Council: Research Funding; Celgene: Consultancy, Honoraria, Research Funding; Acerta Pharma: Honoraria, Research Funding; Janssen: Honoraria, Research Funding; Novartis: Honoraria; Pharmacyclics: Honoraria; NIH: Research Funding; Kite: Honoraria; TG Therapeutics: Honoraria; Wellcome Trust: Research Funding; Cancer Research UK: Research Funding; Unum: Equity Ownership; Roche: Honoraria; Abbvie: Honoraria.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 470-470
Author(s):  
Colleen Annesley ◽  
Corinne Summers ◽  
Michael A. Pulsipher ◽  
Jodi L. Skiles ◽  
Amanda M. Li ◽  
...  

Abstract Introduction: CAR T cells in B-ALL have recently focused on the dual targeting of CD19 and CD22 to enhance long term remissions and prevent antigen negative recurrence that is frequently encountered with single antigen targeting. However, a barrier to this approach has been the retention of dual specificity killing and ongoing persistence. PLAT-05 is a multisite phase 1 trial (NCT03330691) that was undertaken to evaluate the safety and feasibility of SCRI-CAR19x22v1, a dual transduced patient-derived product with lentiviral vectors encoding for either a CD19- or CD22-specific CAR, both with 4-1BB co-stimulation. Early results of the first 27 subjects infused demonstrated feasibility and a favorable safety profile with encouraging CR rates. Products were fractionated evenly between CD19 CAR, CD19+CD22 CAR and CD22 CAR. However, engraftment was predominated by the single CD19 CAR population, leading to unsuccessful eradication of CD19-CD22+ leukemia. This finding led to re-engineering the CD22 CAR construct for enhanced CD22 targeting, and re-initiation of dose finding with the new product, SCRI-CAR19v2. Methods: After enrollment, subjects undergo apheresis followed by a combined CD4/CD8 positive immunomagnetic selection and seeded at a prescribed ratio for co-culture in a closed-system G-Rex bioreactor. Following anti-CD3xCD28 bead stimulation, T cells are transduced with two lentiviral vectors that encode for either a CD19- or CD22-specific CAR. After flu/cy lymphodepletion, CAR T cells are infused at one of three dose levels: 0.5, 1 or 3 X 10 6 CAR T cells/kg. Toxicity is graded according to CTCAEv5 except for CRS and ICANS which are graded per ASTCT criteria. Leukemic response and CAR T cell persistence are evaluated by flow cytometry. Results: 14 subjects enrolled onto PLAT-05 for the SCRI-CAR19x22v2 dose escalation and products were successfully manufactured in all subjects with an average of 8.9 days in culture (range 7-12 days). In contrast to v1 products, the CAR composition of v2 products was skewed in favor of CD22 CAR expression, with median expression of each population as follows: 42% CD22 only, 33% CD19 and CD22, 3.2% CD19 only. Twelve subjects were infused (0.5x10 6/kg n=3, 1x10 6/kg n=3, 3x10 6/kg n=6), 11 of whom had prior exposure to CD19 or CD22 targeted therapies with diverse expression of CD19 and CD22 on the leukemic blasts. No dose limiting toxicities occurred in the 11 fully evaluable subjects (1 subject is pending) and the recommended phase 2 dose was determined as 3x10 6 CAR + cells/kg. CRS was present in 45% of subjects, all grade 1. Neurotoxicity occurred in 45% of subjects, all grade 1 except a single self-limited grade 3 ICANS event (due to a single time point CAPD score). 91% of infused subjects obtained a CR, of which 100% were MRD negative. The non-responder had persistent disease that was CD19-CD22-. The in vivo engraftment of CAR T cells peaked most frequently between day +7 and +14 and was predominated by the CD22 CAR T cells, with some minimal contribution of dual and CD19 CAR T cells. Of the 4 subjects who had previously received an FMC63 based CD19 CAR, expansion was due to solely to the CD22 CARs in all 4 subjects, with apparent rejection of the T cells expressing CD19 CAR. Conclusions: We demonstrate enhanced activity of SCRI-CAR19x22v2 compared to v1, now with dual activity against both CD19 and CD22 demonstrated by elimination of ALL with single antigen expression. We maintained encouraging CR rates with a favorable toxicity profile. Interestingly, the product is predominated by CD22 CAR and CD19/CD22 CAR populations, while in vivo engraftment is predominated by single CD22 CAR expressing T cells. Subjects exposed to prior CD19 murine based CAR rejected the CD19 CAR but engrafted the CD22 CAR with demonstratable activity, a potential advantage of a dual transduced product. The impact of lower CD19 CAR engraftment on durable remissions is unknown. While limited expansion of the CD19 CAR population could be protective against exhaustion, the uneven engraftment of the CAR populations may ultimately lead to single antigen targeting. Optimization of transduction may be required for a more balanced product to maintain dual targeting and give further insight into the behavior of dual-expressing CAR T cells. An expansion cohort is currently underway to further characterize engraftment kinetics and in vivo performance to best inform future development of this product. Figure 1 Figure 1. Disclosures Pulsipher: Jasper Therapeutics: Honoraria; Adaptive: Research Funding; Equillium: Membership on an entity's Board of Directors or advisory committees. Li: Novartis Canada: Membership on an entity's Board of Directors or advisory committees. Jensen: Bluebird Bio: Research Funding; Umoja Biopharma: Current holder of stock options in a privately-held company, Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Patents & Royalties. Gardner: Novartis: Consultancy; BMS: Patents & Royalties. OffLabel Disclosure: investigational use of SCRI-CAR19x22 will be discussed


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 36-36 ◽  
Author(s):  
Dries Deeren ◽  
Johan A. Maertens ◽  
Tara Lin ◽  
Yves Beguin ◽  
Benjamin Demoulin ◽  
...  

Background T-cells engineered to express a chimeric antigen receptor (CAR) based on the NKG2D receptor (NKG2D CAR) targeting the 8 NKG2D ligands (MICA/B, ULBP1-6) over-expressed by a large variety of malignancies have been developped to treat patients, including patients with acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). Previously, CYAD-01, the first generation of NKG2D CAR T-cell products, was evaluated in several Phase I clinical trials and showed initial signals of objective clinical responses in patients with r/r AML and MDS, albeit with short durability. Preclinical data have shown that NKG2D ligands MICA and MICB are transiently upregulated on activated CAR T-cells, and target-dependent killing of CAR T-cells post-infusion can potentially occur, leading to short in vivo persistence. In an effort to increase the persistence and potency of the NKG2D CAR T-cells, CYAD-02 was developed as a next-generation product using a non-gene editing approach to silence the expression of MICA and MICB. Aim MICA and MICB were down-regulated by inserting a single optimized short hairpin RNA (shRNA) targeting both MICA and MICB within the NKG2D CAR construct. This next-generation NKG2D CAR T-cell product is manufactured with the OptimAb process, resulting in CAR T-cells with a higher frequency of early memory T-cells secreting high levels of cytokines upon activation, and is referred to as CYAD-02. Results As compared to CYAD-01, CYAD-02 cell expansion in vitro was 3-fold increased. In an in vivo AML model, CYAD-02 showed 10-fold higher engraftment 1 week after injection and improved anti-tumor activity as compared to CYAD-01 manufactured with the initial mAb process. This led to a 2.6-fold increase of mouse survival as compared to CYAD-01 in a stress-test aggressive AML model where the dose of CYAD-01 was titrated down for minimal activity (figure). The first-in-human study evaluating CYAD-02, the CYCLE-1 study (NCT04167696), has been initiated in early 2020 in patients with r/r AML/MDS. The study evaluates three dose-levels of CYAD-02 (1x108, 3x108 and 1x109 cells/infusion), administered as a single infusion after non-myeloablative preconditioning chemotherapy (cyclophosphamide 300 mg/m²/day and fludarabine 30 mg/m²/day, daily for 3 days, CyFlu) according to a classical Fibonacci 3+3 design. As of August 2020, 6 patients have been treated with CYAD-02 at the dose of 1x108 or 3x108 cells/infusion. To date, the results demonstrate the safety and tolerability for CYAD-02 in patients with r/r AML and MDS with no dose-limiting toxicity observed. The study is currently enrolling at 1x109 cells/infusion. The CYAD-02 safety profile and preliminary clinical activity data together with the pharmacokinetics evaluation from the complete dose escalation segment will be provided at the time of presentation. Conclusion/summary The CYAD-02 is the first autologous CAR T-cell product based on the non-gene edited shRNA technology used to treat patients. This next generation NKG2D CAR T-cell product is currently investigated in the CYCLE-1 Phase I study in r/r AML/MDS patient population, a difficult to target disease due in part to the absence of truly AML-specific surface antigens, its rapid clinical progression and the absence of disease control by the CyFlu preconditioning. Both the anti-MICA and MICB shRNA hairpin and the OptimAb manufacturing process for CYAD-02 aim to improve CAR T-cell persistence and clinical responses. Figure Disclosures Lin: Mateon Therapeutics: Research Funding; Aptevo: Research Funding; Abbvie: Research Funding; Ono Pharmaceutical: Research Funding; Incyte: Research Funding; Gilead Sciences: Research Funding; Jazz: Research Funding; Astellas Pharma: Research Funding; Bio-Path Holdings: Research Funding; Celgene: Research Funding; Celyad: Research Funding; Genetech-Roche: Research Funding; Seattle Genetics: Research Funding; Tolero Pharmaceuticals: Research Funding; Trovagene: Research Funding; Prescient Therapeutics: Research Funding; Pfizer: Research Funding. Demoulin:Celyad Oncology: Current Employment. Fontaine:Celyad Oncology: Current Employment. Sotiropoulou:Celyad Oncology: Current Employment. Alcantar-Orozco:Celyad Oncology: Current Employment. Breman:Celyad Oncology: Current Employment. Dheur:Celyad Oncology: Current Employment. Braun:Celyad Oncology: Current Employment. Lonez:Celyad Oncology: Current Employment. Gilham:Celyad Oncology: Current Employment. Flament:Celyad Oncology: Current Employment. Lehmann:Celyad Oncology: Current Employment.


Sign in / Sign up

Export Citation Format

Share Document