scholarly journals The Presence of Minimal Residual Disease, As Determined By Highly Sensitive Quantitation of NPM1-Mutatation, Provided Powerful Prognostic Information in Acute Myeloid Leukemia

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5097-5097
Author(s):  
Atsushi Marumo ◽  
Hiroki Yamaguchi ◽  
Yuho Najima ◽  
Kensuke Usuki ◽  
Shinichi Kako ◽  
...  

Background: As recurrence of acute myeloid leukemia (AML) is difficult to predict, it is important to detect it by measuring minimal residual disease (MRD). PML-RARA, RUNX-RUNX1T1, CBFB-MYH11 are regarded as the reliable MRD markers. However, in AML with normal karyotype and many other forms, no MRD markers have been established. NPM1 mutations, occurring in approximately 30% of adult AML cases, and 50-60% of AML cases with normal karyotype, represent one of the most frequent mutations in AML. Recently, NPM1 mutation is reported to be useful in assessing MRD. We undertook a retrospective and prospective investigation of the usefulness of NPM1 mutation as an MRD marker in Japanese patients with AML. Methods: The subjects were 38 NPM1-mutated AML patients with first hematological remission at several hospitals related to our institution between 2001 and 2018. This study was approved by the ethics committee of Nippon Medical School and the informed consents were obtained from all patients, according to the Declaration of Helsinki. We analyzed peripheral blood cells or bone marrow cells at diagnoses, and evaluated only bone marrow cells after diagnoses. Detection of NPM1 mutation was carried out using allele-specific real time PCR following creation of a complementary primer. After dilution of the samples, sensitivity to TCTG, CATG, and CCTG was found to be 0.001%. The NPM1 mutant copies were qualified only at successful amplification of internal control. Results: The median age of the patients was 58 years (18-79 years). There were 32 cases with intermediate cytogenetic prognosis and 6 cases with unclear chromosomal profile. Of the 38 cases, 14 cases (37%) were FLT3-ITD-positive and allogeneic hematopoietic stem cell transplantation was carried out in 14 cases (37%). The base sequence was TCTG in 36 cases and CCTG in 2 cases. Persistence of NPM1-mutatation was present in 25 patients with first hematological remission (66%). Compared with patients with MRD negative, patients with MRD positive were associated with DNMT3A mutation (MRD positive 12/25 vs MRD negative 0/13, p=0.003). The rate of relapse in patients with MRD positive was significantly higher than those of in patients with MRD negative (MRD positive 76% vs MRD negative 23%, p=0.004). The rates of relapse free survival (RFS) and overall survival (OS) in patients with MRD positive were significantly lower than those in patients with MRD negative (RFS at 2 years: MRD positive 14% vs MRD negative 86% p=0.003; Figure 1, OS at 2 years: MRD positive 25% vs MRD negative 93%, p<0.001). In FLT3-ITD negative group, the rates of RFS in patients with MRD positive were significantly lower than those in patients with MRD negative. (RFS at 2 years: MRD positive 21% vs MRD negative 92% p=0.001; Figure 1). Conclusion: The presence of MRD with NPM1 mutation is significantly associated with relapse and it is useful to decide their treatment strategy. Especially, there is the usefulness of NPM1 mutation as an MRD marker in NPM1 positive Flt3-ITD negative AML patients who are generally classified as favorable risk. According to previous reports, it is known that NPM1-mutated AML sometimes relapse with losing NPM1 mutations. However, in this study, all NPM1-mutated AML relapse without losing NPM1 mutations. We need to collect more patients and are going to confirm whether there are patients who relapse with losing NPM1 mutations or not. We plan to analyze the genetic background of MRD positive and negative patients with next-generation sequencing. We are going to announce the genetic characteristics in addition to this result at ASH. Disclosures Usuki: Astellas Pharma Inc: Research Funding, Speakers Bureau; Daiichi Sankyo Co., Ltd.: Research Funding, Speakers Bureau. Kako:Bristol-Myers Squibb: Honoraria; Pfizer Japan Inc.: Honoraria. Inokuchi:Bristol-Myers Squibb: Honoraria, Research Funding; Novartis: Honoraria; Celgene: Honoraria; Pfizer: Honoraria.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 400-400 ◽  
Author(s):  
Wolfgang Kern ◽  
Daniela Voskova ◽  
Claudia Schoch ◽  
Wolfgang Hiddemann ◽  
Susanne Schnittger ◽  
...  

Abstract Guiding antileukemic treatment in patients with acute myeloid leukemia (AML) is increasingly based on levels of minimal residual disease (MRD) which can be quantified with high sensitivity by multiparameter flow cytometry (MFC). The optimum checkpoint for determination of MRD during the course of therapy, however, has not yet been determined. We applied MFC using a comprehensive panel of antibodies to identify leukemia-associated aberrant immunophenotypes (LAIPs) at diagnosis and to quantify MRD by individually selected antibody combinations. The prognostic impact of MRD levels was assessed in comparison to cytogenetics and age. Patients received double induction, consolidation, and maintenance therapies and underwent allogeneic stem cell transplantation if they were younger than 60 years and had a matched related donor. In 286 patients with newly diagnosed and untreated AML MFC-based assessment for the presence of LAIP has been performed. The median percentage of LAIP-positive bone marrow cells at diagnosis was 16.04% (range, 2.54%–76.14%). All individual LAIPs were applied to 26 normal bone marrow samples to estimate sensitivity based on the median percentages of LAIP-positive normal bone marrow cells which ranged from 0.00% to 1.01% (median, 0.02%). A total of 550 follow-up samples has been analyzed in these patients at different checkpoints (CP1, up to day 21 after start of therapy, n=85; CP2, day 22–60, n=122; CP3, day 61–120, n=158; CP4, day 121–365, n=137; CP5, after day 365, n=48). In order to adjust for differences in the percentages of LAIP-positive bone marrow cells at diagnosis the logarithmic difference (LD) between diagnosis and follow-up was calculated for each follow-up sample. The median LDs at the respective checkpoints were: CP1, 2.02; CP2, 2.29; CP3, 2.39; CP4, 2.53; and CP5, 2.81. Separation of patients according to the respective median LDs resulted in differences in event-free survival (EFS; CP1: 21.1 vs. 9.1 months, p=0.0711; CP2: 14.2 vs. 9.3 months, p=0.0095; CP3: 30.9 vs. 13.5 months, p=0.0055; CP4: median not reached vs. 14.1 months, p<0.0001; CP5: median not reached vs. 22.5 months, p=0.0001) and overall survival (OS; CP3: median not reached vs. 21.6 months, p=0.0332; CP4: 90% vs. 53% at 2 years, p=0.0058). Cox analysis using the LDs at the different checkpoints as continuous variables confirmed the prognostic impact on EFS (CP2, p=0.002; CP3, p=0.0003; CP4, p<0.0001; CP5, p<0.0001) and revealed an impact also on OS (CP3, p=0.003; CP4, p=0.001; CP5, p=0.029). Cox regression analysis taking into consideration cytogenetics and age as covariates proved the independent prognostic impact of LD at checkpoints 2 to 5 on both EFS and OS with the exception of LD at checkpoint 2 and OS. In fact, LD at checkpoint 5 was the only parameter independently related to EFS and OS. These data suggest that quantification of MRD by MFC in AML results in powerful and independent prognostic parameters. In particular during the first year of treatment MRD levels provide important prognostic information. Clincal trials should use MRD-based stratification in order to assess the efficacy of early treatment intensification in high-risk AML patients.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2847-2847
Author(s):  
Aline Renneville ◽  
Florence Pasquier ◽  
Selim Corm ◽  
Nathalie Philippe ◽  
Charikleia Kelaidi ◽  
...  

Abstract Mutations in exon 12 of the nucleophosmin (NPM1) gene occur in approximately 50% of adult acute myeloid leukemia (AML) with normal karyotype. More than 40 mutant variants have been identified. Most of these mutations consist of a 4-bp insertion, which can be used as a target for minimal residual disease (MRD) monitoring. We previously checked the stability of NPM1 mutations at relapse in 21 NPM1-mutated patients at initial diagnosis. In this prospective study, we evaluated MRD by real-time quantitative PCR (RQ-PCR) in 36 NPM1-mutated AML patients corresponding to 33 adult and 3 pediatric cases, treated according to the French ALFA9801 or ALFA9802 and ELAM02 protocols, respectively. Out of these patients, 31/34 (91%) had normal karyotype, 13/33 (39%) had a high initial white blood cell count, and 10/36 (28%) were FLT3-Intern Tandem Duplication (FLT3-ITD) positive. 28 (78%) patients carry NPM mutation A, 3 (8%) mutation B and 5 (14%) other rare variants. RQ-PCR assays using a mutation-specific primer were performed on cDNA for mutation A and B and on genomic DNA for other NPM1 mutants. In our experiments, the maximal reproductible sensitivity of NPM1-based MRD detection is about 10−4 on genomic DNA and 10−5 to 10−6 on cDNA. The median follow-up was 260 days [40–791]. 2 to 9 follow-up samples from bone marrow and/or peripheral blood were analysed per patient. No correlation was found between leukocytosis at diagnosis and initial expression ratio of NPM1 mutation. The study of MRD log reduction after induction therapy shows that molecular responses are very heterogeneous (from 4.10−2 to more than 1.10−5), but 50% of patients reach at least a 4 log reduction in NPM1 levels. Patients with FLT3-ITD tend to have lower log reduction after induction than patients without FLT3-ITD, although not statistically significant (P=0.07). The analysis of NPM1-MRD in bone marrow and in peripheral blood at the same follow-up time-points shows that NPM1 levels can be until 1 log higher in bone marrow. This indicates that the evaluation of NPM1-MRD in bone marrow is more informative than in peripheral blood. We found all relapses had NPM1-MRD levels comparable to those observed at diagnosis. Among the 5 patients who relapsed so far, 2 were predictable by increasing MRD levels 1 to 4 months before hematological relapse. In 29 out of 36 cases, we could monitor MRD by both NPM1 mutation and WT1 gene expression. The comparison of the MRD profiles obtained by these two approaches reveals some discordant results, which can be, at least in part, explained by difference in the sensitivity of the RQ-PCR techniques, since the sensitivity of WT1 expression as MRD target is generally not higher than 10−3. In conclusion, NPM1 mutations are very specific and sensitive markers for MRD monitoring in AML. Further studies are required to determine if NPM1-MRD provides an independent prognostic factor and may be useful for therapeutic stratification in AML patients with intermediate risk cytogenetics.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1602-1602
Author(s):  
Thomas Kristensen ◽  
Birgitte Strange Preiss ◽  
Lone Friis ◽  
Michael B. Møller

Abstract Abstract 1602 Poster Board I-628 Mutation in exon 12 of the nucleophosmin (NPM1) gene occurs in approximately 60% of acute myeloid leukemia (AML) patients with normal karyotype. To date, molecular minimal residual disease (MRD) monitoring in this patient group has primarily been based on expression of the Wilms tumor gene (WT1), although expression of WT1 in non-leukemia cells limits the specificity of this marker. Mutation in the NPM1 gene is potentially a superior MRD marker compared to WT1 gene expression by being specific to the malignant clone. The use of NPM1 mutation as a MRD marker would furthermore be in line with the widespread use of leukemia cell specific fusion-genes as MRD markers in AML patients with balanced translocations. In the present study, we therefore evaluated NPM1 mutation as a MRD marker with respect to stability, sensitivity and specificity in direct comparison to WT1 gene expression. A total of 13 relapsed AML patients with normal karyotype that were positive for mutation in NPM1 and WT1 gene expression at the time of diagnosis were included in the study. The NPM1 mutational load and WT1 gene expression was analyzed by real-time qPCR in up to 22 peripheral blood mononuclear cell samples per patient from the time of primary diagnosis to latest follow-up to compare the kinetics of the two markers during periods of morphological remission and relapse events. The 13 patients experienced a total of 18 morphological relapses which were all accompanied by high levels of NPM1 mutation, along with high WT1 mRNA levels, thus demonstrating complete stability of NPM1 mutation during relapse in the present material. During periods of complete morphological remission, the NPM1 mutational load was below detection limit (< 1/1000 cells) in all samples. In contrast, WT1 gene expression was detectable in 70% of these samples, thus demonstrating the limited specificity of this marker. This background WT1 expression in non-leukemia cells reached levels of up to 1% of the levels detected at the time of diagnosis thus limiting the de facto MRD marker sensitivity of WT1. All samples with detectable levels of NPM1 mutation after a period of complete molecular remission were followed by a morphological relapse within weeks. The present study therefore shows that mutation in NPM1 is a stable and more sensitive and specific, and therefore superior, molecular MRD marker than WT1. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4676-4676
Author(s):  
Seo-Jin Park ◽  
Hyun-Sook Chi ◽  
Kyung Ran Jun ◽  
Sook Kyoung Min ◽  
Seongsoo Jang ◽  
...  

Abstract Abstract 4676 INTRODUCTION Mutations of the nucleophosmin gene (NPM1) occur in up to 40-50% of adult acute myeloid leukemia (AML) with a normal karyotype and are associated with a higher frequency of fms-like tyrosine kinase-3 internal tandem duplications (FLT3-ITD) and responsiveness to induction chemotherapy. The incidence of NPM1 mutations in Caucasians have been previously reported in several studies whereas there have been few reports from Asian countries including Japan, China, and Taiwan. The objectives of our study was to determine the prevalence of NPM1 mutations and distribution of AML subtypes in the normal karyotype AML Korean population in addition to establishing an easily applicable yet reliable method to indentify these mutations. We also examined treatment outcomes and survival (relapse-free survival (RFS) and overall survival (OS)) by stratifying them into groups according to NPM1 and FLT3-ITD mutation status. METHODS We retrospectively analyzed the prevalence of NPM1 mutations in 185 patients with normal karyotype AML diagnosed between 2002 and 2009. Genomic DNA extracted from bone marrow aspirate specimens obtained at diagnosis was amplified by PCR, followed by analysis on an ABI 3130 Genetic Analyzer (Applied Biosystems) by capillary electrophoresis. Cases found to have mutation peaks at 174bp by Gene Mapper ID v3.2 software (Applied Biosystems) were further analyzed by direct sequencing of exon 12 of NPM1 gene. Follow-up data was reviewed by retrospective chart review for treatment outcome and survival analyses. Among the 185 AML patients, 18 with less than a 1-month follow-up period were excluded since they could not be sufficiently evaluated. RESULTS Mutations in exon 12 of NPM1 were found in 37 of 185 (20.0%) normal karyotype AML patients and were composed of TCTG duplications (Type A, 32/37, 86.5%), 3 previously reported variants, and 2 new variants previously not reported. Mutations were most frequently seen in AML M1 patients (12/37, 32.4%) and other subtypes such as M2, and M4 were often observed. NPM1 mutations were particularly associated with CD34-negativity (<0.0001) and higher bone marrow blast (%) at diagnosis (p=0.0067). There was a mild trend towards frequent FLT3-ITD mutations in NPM1+ patients in comparison to the NPM1- group (35.1% and 19.6%, p=0.0787). After exclusion of the 18 patients lost during follow-up, no significant differences in RFS (8.5 and 10.8 months, p=0.7922) and OS (11.5 and 13.6 months, p=0.6147) were observed between the NPM1+ and NPM1- groups. Stratification into good (NPM1+/FLT3-ITD-), intermediate (NPM1-/FLT3-ITD- & NPM1+/FLT3-ITD+), and poor (NPM1-/FLT3-ITD+) prognostic groups did not reveal significant differences in median values of RFS and OS (in months; RFS, 16.0 and 13.8 and 7.3, p=0.1872; OS, 16.0 and 10.8 and 7.3, p=0.3661). However, the Kaplan-Meier survival analysis of these stratified prognostic groups showed a trend toward a difference in RFS (p=0.084) and a significantly longer OS in the NPM1+/FLT3-ITD- (good prognostic) group (p=0.031). CONCLUSIONS The prevalence of NPM1 mutations in normal karyotype AML patients in Koreans was lower than those reported in Western studies. In areas with low prevalence, a screening method to detect mutations enables rapid reporting with only selective cases requiring the labor-intensive direct sequencing step. In accordance with previous studies, a significantly longer OS in the NPM1+/FLT3-ITD- group suggests that NPM1+ may be associated with a favorable outcome. However, discordant parameters such as prevalence and RFS may signify that elucidation of the prognostic significance of NPM1 mutations in different ethnic groups may be necessary. Thus, NPM1 mutation studies should be considered in the diagnostic work-up of all AML patients with a normal karyotype given its role as a prognostic marker. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3530-3530
Author(s):  
Joanna Schiller ◽  
Inka Praulich ◽  
Michael Hallek ◽  
Karl-Anton Kreuzer

Abstract Abstract 3530 Minimal residual disease (MRD) monitoring in patients with acute myeloid leukemia (AML) can predict relapse clearly in advance and therefore allows early therapeutic intervention. Moreover, recent studies have highlighted the significance of personalized treatment on the basis of MRD status for improving outcome in AML. The FLT3 internal tandem duplication (FLT3 -ITD) is one of the most frequent mutations in AML patients occurring in 15–35% of all cases and approximately in 20–30% of cytogenetic normal (CN) AML. Clinically, FLT3 -ITDs have been strongly associated with high leukocytosis, high blast counts, normal karyotype and, most importantly, poor clinical outcome. However, due to the high sequence variability of individual FLT3 -ITD commonly a universal PCR approach is applied which has a low sensitivity (approx. 1: 5×102). For this reasons FLT3 -ITD is regarded as not suitable for longitudinal MRD measurements. The aim of this study was to develop a novel cDNA-based, highly sensitive quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) assay for the detection of the FLT3 -ITD mutation level. Furthermore, the prognostic value of FLT3 -ITD-based MRD detection in AML patients was compared with other genetic markers like NPM1 mutations, MLL -partial tandem duplication (MLL -PTD) and the expression of PML /RARα fusion gene or WT1 over-expression. To design patient-specific qRT-PCR, FLT3 -ITDs were amplified with universal primers, purified corresponding bands from agarose gel and directly sequenced. On the basis of the FLT3 -ITD, individual mutation-specific primers were designed. The expression of FLT3 -ITD was determined using complementary DNA samples at different points in time diagnosis and subsequent treatment. For estimation of the sensitivity and specificity of this approach we used a dilution of FLT3 -ITD cDNA in a pool of FLT3 -unmutated cDNA. From a total of 394 newly diagnosed AML patients 55 (14%) were FLT3 /ITD positive. Retrospectively we analyzed ITD mutation of FLT3 in 39 available cases. The length of ITD ranged from 3 to 144 base pairs (median 46). Nine patients had extra insertions of 2–38 base pairs between two repeats. For the FLT3 -ITD quantification we developed patient-specific qRT-PCR for 29 individuals with mutation-specific forward primers and studied 83 peripheral blood and 61 bone marrow samples. Three cases with WT1, fifteen with NPM1, three with MLL -PTD and five with PML /RARα fusion genes expression levels were compared with FLT3 -ITD expression levels. 26 of 29 assays (90%) were highly specific (1:104 − 1:105) and yielded similar results when compared to other high sensitive assays for molecular markers like NPM1 or PML /RARα. In three cases (10%) a co-amplification of the wild-type could not be avoided resulting in lower sensitivity (1:103). We could show that FLT3 -ITD positivity reliably predicted relapse up to 10 months in advance. 92% patients, who achieved FLT3 -ITD negativity with our assay, did not relapse. Furthermore we compared paired PB and BM samples at diagnosis and after induction therapy in 5 cases. The difference in FLT3 -ITD expression were not statistically significant (p=0.8) which is in line with recent studies. We conclude that highly sensitive detection of individual FLT3 -ITD posses equal prognostic power in AML like established molecular MRD markers. Using this approach MRD guided treatment decisions appear to be justified and should be incorporated in future studies. Disclosures: Hallek: Hoffmann-la Roche: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees. Kreuzer:Alexion: Honoraria, Research Funding; Amgen: Honoraria, Research Funding; Celgene: Honoraria, Research Funding; Chugai: Honoraria, Research Funding; CSL Behring: Honoraria, Research Funding; Genzyme: Honoraria, Research Funding; Mundipharma: Honoraria, Research Funding; MSD: Honoraria, Research Funding; Novartis: Honoraria, Research Funding; Pfizer: Honoraria, Research Funding; Shire: Honoraria, Research Funding.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 657-657
Author(s):  
Alexander Kohlmann ◽  
Niroshan Nadarajah ◽  
Vera Grossmann ◽  
Tamara Alpermann ◽  
Wolfgang Kern ◽  
...  

Abstract Abstract 657 Introduction: RUNX1 mutations constitute disease-defining aberrations in acute myeloid leukemia (AML) and were demonstrated to be particularly frequent in secondary and de novo AML with normal karyotype or non-complex alterations and to confer an unfavorable prognosis. Monitoring minimal residual disease (MRD) in AML has been shown to provide prognostic information and is increasingly used for treatment decisions. A variety of molecular markers has been identified suitable for MRD assessment, yet there still is a lack of such markers in a significant number of patients. The use of RUNX1 mutations may bridge a gap. Aims: Patients and Methods: RUNX1 mutation screening was prospectively performed in 814 patients with AML at diagnosis (645 de novo, 109 s-AML, and 60 t-AML). The median age of the patients was 69.6 years (range: 1 – 93 years), including 375 female and 439 male patients, respectively. 50.5% (411/814) of cases presented with a normal karyotype, 38.8% (316/814) with non-complex cytogenetic alterations, 9.6% (78/814) with a complex aberrant karyotype, and 1.1% (9/814) with prognostically favorable cytogenetics. Mutation analysis was performed using a sensitive next-generation amplicon deep-sequencing assay (454 Life Sciences, Branford, CT). Moreover, in a subset of 44 AML patients and additional 59 retrospectively analyzed cases the prognostic impact of MRD levels of RUNX1 mutations was studied at a second time point after completion of intensive induction therapy (median sampling interval: 128 days after diagnosis; range 60 – 180 days). In these follow-up samples the RUNX1 mutations already detected at diagnosis were investigated with a higher coverage (835-fold median coverage) as compared to the diagnostic assessment (759-fold median coverage) resulting in a sensitivity level of 1%. Furthermore, in 57 patients paired samples from diagnosis and relapse were analyzed to assess the stability of RUNX1 mutations. Results: 211/814 patients (25.9%) were detected to carry RUNX1 mutations. The median clone size was 39% and revealed a significant heterogeneity ranging from 2% to 96%. 73.9% (156/211) of mutated patients carried one mutation only, whereas 26.1% (55/211) harbored two (n=46) or more (n=9) mutations. In detail, the 211 patients harbored a total number of 275 alterations in RUNX1: 42.5% (117/275) frame-shift mutations, 34.9% (96/275) missense, 14.2% (39/275) nonsense, 4.4% (12/275) exon-skipping/splicing, and 4.0% (11/275) in-frame insertion/deletion alterations, respectively. Regarding MRD assessment, patients were separated according to the median MRD level (3.92%; range 0.03% - 48.00%) into “good responders” (n=78) with MRD levels below 3.92% and “poor responders” (n=25) with MRD levels above 3.92%. This resulted in significant differences in both event-free survival (median 21.4 vs 5.7 months, p<0.001) and overall survival (73.3% vs 66.1% at 2 years, p=0.016). Moreover, in 57 cases the stability of individual RUNX1 mutations was studied at the time of relapse. In 46/57 (80.7%) cases the same alterations detected at diagnosis were present at relapse, whilst in 2/57 (3.5%) cases the RUNX1 mutation from the diagnostic sample was no longer detectable at relapse. Importantly, in 7/57 (12.3%) patients novel RUNX1 mutations were detected in regions different from those affected at diagnosis. Conclusion: Next-generation deep-sequencing accurately detects and quantifies RUNX1 mutations in AML with high sensitivity. RUNX1 mutations qualify as patient-specific markers for individualized disease monitoring. Thus, the measurement of mutation load by next-generation sequencing may contribute to refine the assignment into distinct risk categories in AML. Analysis of RUNX1 mutations should be considered for the complete coding region at relapse to detect new RUNX1 mutations. Disclosures: Kohlmann: MLL Munich Leukemia Laboratory: Employment; Roche Diagnostics: Honoraria. Nadarajah:MLL Munich Leukemia Laboratory: Employment. Grossmann:MLL Munich Leukemia Laboratory: Employment. Alpermann:MLL Munich Leukemia Laboratory: Employment. Kern:MLL Munich Leukemia Laboratory: Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Equity Ownership. Schnittger:MLL Munich Leukemia Laboratory: Equity Ownership.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3695-3695 ◽  
Author(s):  
Michele Malagola ◽  
Crisitina Skert ◽  
Enrico Morello ◽  
Francesca Antoniazzi ◽  
Erika Borlenghi ◽  
...  

Abstract Background: Although a complete remission (CR) can be achieved in 70-80% of newly diagnosed acute myeloid leukemia (AML) patients, relapses occur in up to the 50% of cases. Thus, minimal residual disease (MRD) monitoring is a major issue for early detection of patients at high-risk of treatment failure and relapse. Aim: to dynamically evaluate WT1 pan-leukemic molecular marker of MRD in patients with AML. Matherial and methods: 107 newly diagnosed AML patients consecutively treated between 2010 and 2013 were monitored with quantitative WT-1 from bone marrow (BM) and peripheral blood (PB) at baseline, after induction, after the first consolidation course, before allogeneic stem cell transplantation (allo-SCT), at the 3rd and the 6th month after transplantation Results: At diagnosis, 104/107 (97%) had increased PB and BM WT1 levels assessed according to the ELN assay. Eighty-eight out of 107 patients (82%) achieved a complete remission (CR) after induction, 30/88 (34%) relapsed during follow up and 24/107 (22%) were addressed to allogeneic stem cell transplantation (allo-SCT). By univariate analysis, PB-WT > 50x10^4/ABL and BM-WT1 > 250x10^4/ABL after induction (PB: p=0.02; BM: p=0.04), after consolidation (PB: p=0.003), at the end of treatment (PB and BM: p=0.001), at 3rd month of follow up (PB and BM: p=0.005) and at 6th month of follow up (PB: p=0.005) were associated with a reduced overall survival (OS). By multivariate analysis, a BM-WT1 > 250 x 10^4/ABL at the end of treatment was significantly associated with a reduced OS. In order to adapt the cut-off of WT1 in our series of patients, we considered WT1 levels as continuous variables and categorized them at approximately the 25th, 50th, and 75th percentile. A cut-off of PB-WT1 > 25x10^4/ABL and BM-WT1 > 125x10^4/ABL at the end of the treatment program was identified as correlated with reduced leukemia-free survival (LFS) and OS (p=0.001). Similarly, and restricting the analysis on the 24 patients allo-transplanted in CR, 8/11 (73%) with pre-transplant PB-WT1 ≥ 5 and 4/13 (31%) with PB-WT1 < 5 relapsed, respectively (p=0.04). The incidence of relapse was higher in AML patients with PB-WT1 ≥ 5 measured at 3rd (56% vs 38%; p=0.43) and 6th month (71% vs 20%; p=0.03) after allo-SCT. Interestingly, 5/5 (100%) patients with pre-transplant PB-WT1 ≥ 5 who never reduced this level at 3rd or 6th month after allo-SCT experienced a disease recurrence. Conclusions: our data, although retrospectively collected, show that WT1 monitoring may be useful to predict the relapse in AML patients. Acknowledgments: This work was supported in part by Banca di Credito Cooperativo di Pompiano e Franciacorta and Lions Club Bassa Bresciana Association. Disclosures Russo: Celgene: Research Funding; Gilead: Research Funding; Novartis: Consultancy.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2582-2582
Author(s):  
Papagudi Ganesan Subramanian ◽  
Nikhil Patkar ◽  
Prashant Tembhare ◽  
Yajamanam Badrinath ◽  
Sitaram G Ghogale ◽  
...  

Abstract Introduction: Plasmacytoid dendritic cells (pDCs) are a subset of immune cells that secrete type 1 interferons and serve as antigen presenting cells. In many tumors increased pDC frequencies have been observed and are involved in tumor response initiation. However, there is not much data in acute myeloid leukemia especially in the context of minimal residual disease. Here we evaluated the frequencies of pDCs in the post induction bone marrow and found a significant correlation with MRD levels. Methods: All adult (>18 years ) of patients who were treated for AML [other than AML with t(15;17)] were accrued over a 2 year period. The presence of MRD was assessed using 8 colour flow cytometry on a post induction bone marrows using CD45, CD36, CD38, CD123, CD33, CD117, CD34, HLADR, CD7, CD56, CD13, CD19, CD16, CD11b, CD15 and CD14. Minimum of 500,000 events were acquired/tube on an 8 colour BD FACS Canto II or a 10 colour BC Navios instruments. Kaluza software (v1.3) was used to analyze the .fcs files. MRD was calculated as a percentage of abnormal leukemic cells per total viable cells as gated in forward scatter v side scatter plot. pDCs were calculated as CD123 bright population which expressed HLA-DR (while gating on the progenitors and monocytes based on their expression of CD45 and side scatter). The pDC percentages were counted as a fraction of all viable cells. Based on the results the levels of pDCs were divided into pDC High and pDC Low groups. Statistical analysis was done using Chi squared groups. Results: After exclusion of induction deaths, a total of 94 patients of adult AML was assessed for the presence of MRD at the end of induction. Of these MRD was detected in 48 (51.1%, range 0.01-40%). pDC values ranged from <0.01% to 1.95% (median 0.15%). Median pDC value in the MRD positive group was lower (0.05%) as compared to the MRD negative group (0.23%). Out of 94 patients of 44.7% patients belonged to the pDC Low group of which majority patients were MRD positive (66.7% of the pDC Low group). Similarly majority of patients in the pDC High group were MRD negative (61.5% of the pDC High group). A statistical analysis of these categories was also found to be significant (p=0.008) Conclusion: These pilot data seem to indicate that the pDC burden in the bone marrow may have a role in influencing MRD clearance in the bone marrow. A detailed investigation of the pDC function in the bone marrow microenvironment is warranted. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 173-173
Author(s):  
Yi Zhou ◽  
Daisuke Araki ◽  
Megan Othus ◽  
Jerald P. Radich ◽  
Anna B. Halpern ◽  
...  

Abstract Background: Numerous studies from others and our institution have demonstrated that the presence of minimal residual disease (MRD), detected at the time of hematopoietic cell transplantation (HCT), is strongly and independently associated with increased relapse risk and short survival in adults with acute myeloid leukemia (AML) undergoing myeloablative allogeneic HCT in morphologic complete remission (CR). In contrast, very little information is available regarding the prognostic significance of peri-transplant MRD dynamics in these patients. Since bone marrow staging studies with multiparameter flow cytometric (MFC) assessment for MRD are routinely obtained not only before but also at approximately day +28 following transplantation at our institution, we here retrospectively studied the relationship between peri-HCT MRD dynamics and post-transplant outcomes in a large patient cohort. We asked whether persistence or disappearance of MRD might identify cohorts of patients in whom post-transplant therapy was particularly indicated or unnecessary. Patients and Methods: AML patients ³18 years of age were eligible for this retrospective analysis if they were in first or second morphologic CR or CR with incomplete blood count recovery (CRi) irrespective of the presence of MRD, underwent allogeneic HCT with myeloablative conditioning between 2006 and 2014, received peripheral blood or bone marrow as stem cell source, and had pre-HCT bone marrow staging studies available that included 10-color MFC assessments for MRD. MRD was identified as a cell population showing deviation from normal antigen expression patterns compared with normal or regenerating marrow; any level of residual disease was considered MRDpos. We considered post-HCT MRD assessments in patients in whom bone marrow re-staging with MFC MRD analysis were obtained 28±7 days after transplantation. For this analysis, the primary endpoint of interest was overall survival, which was estimated using the Kaplan-Meier method. Results: 311 patients were identified and included in this study. Consistent with our previous analyses, patients with MRD at the time of HCT (MRDpos; n=76) had significantly shorter survival than MRDneg patients (n=234; estimated 3 year post-HCT survival: 26% [95% confidence interval: 17-37%) vs. 73% [66-78%], P <0.001). 310 patients survived at least 21 days following transplantation; for 279 of these (89.7%), post-HCT MRD assessments were obtained at day +28±7 and available for analysis. 214 patients (76.7%) had no MFC evidence of MRD before and after HCT (MRDneg/MRDneg), 2 (0.7%) were MRDneg/MRDpos, 49 (17.6%) were MRDpos/MRDneg, and 14 (5.0%) were MRDpos/MRDpos. Of the 65 patients who had detectable MRD either before and/or after transplantation, 58 had decreasing levels of MRD (MRDdecr) over the peri-HCT period, whereas 7 patients had increasing MRD levels (MRDincr) around the time of transplantation. As depicted in Figure 1, MRDneg/MRDneg patients had excellent long-term outcomes (survival at 3 years after day +28 MRD assessment: 76% [69-82%]), whereas both MRDneg/MRDpos patients died within 70 days after the day +28 MRD assessment. Interestingly, for patients who were MRDpos before transplantation, outcomes were relatively poor regardless of whether or not they had persistent MRD around day +28 after transplantation (MRDpos/MRDneg patients: 23% [12-36%]; for MRDpos/MRDpos patients: 19% [4-44%]). However, long-term survival was only observed among MRDdecr patients (at 3 years after day +28 MRD assessment: 24% [14-37%]), whereas all MRDincr patients died a median of 97 (range: 15-808) days following the post-HCT MRD assessment (Figure 2). Conclusion: Patients who have no evidence of MRD before and after HCT have excellent long-term outcomes. In contrast, patients who are MRDpos before transplantation have poor survival expectations regardless of whether or not they clear MRD within the first 28 days after transplantation, but long-term survival is only found among some patients with decreasing MRD levels over the peri-transplant period. This finding suggests that patients who are MRDpos at the time of HCT should be considered for pre-emptive therapeutic strategies given their high risk of disease recurrence regardless of the day +28 MRD information. Figure 1. Figure 1. Figure 2. Figure 2. Disclosures Radich: Incyte: Consultancy; Ariad: Consultancy; Gilliad: Consultancy; Novartis: Consultancy, Research Funding. Walter:Amphivena Therapeutics, Inc.: Consultancy, Research Funding; Seattle Genetics, Inc.: Research Funding; Covagen AG: Consultancy; AstraZeneca, Inc.: Consultancy; Pfizer, Inc.: Consultancy; Amgen, Inc.: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document