scholarly journals Preclinical Evaluation of Human Placental-Derived Allogeneic CD19 CAR-T Cells Against B Cell Malignancies

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3222-3222
Author(s):  
Kathy Karasiewicz ◽  
Shuyang He ◽  
Mary Ng ◽  
Kristina Tess ◽  
Weifang Ling ◽  
...  

Celularity, Inc. is developing a CD19 CAR-T Cell therapy using an allogeneic platform derived from postpartum human placental cells. T cells isolated from placenta/ umbilical cord blood and genetically modified to express CD19 chimeric antigen receptor (CAR), termed Placental-derived (P-) CD19 CAR T cells, are in development for the treatment of B cell malignancies. Unlike adult peripheral blood mononuclear cell (PBMC)-derived T cells, P-T cells are mostly naïve (CD45RA+) and can be readily expanded while maintaining an earlier differentiation phenotype such as greater expression of naïve/ memory markers, lower expression of effector/ exhaustion markers, allowing for greater proliferative potential of these cells ex vivo. These cells are also known to have greater immune tolerance to HLA mismatch and display impaired allogeneic activation, contributing to lower incidences of severe graft-verse-host disease (GvHD) (Barker, et. al. Blood, 2001; Chen, et al. Biology of Blood and Marrow Transplantation, 2006), making them an attractive cell population for use as an allogeneic, adoptive cell therapy. A robust process for the isolation, transduction, and expansion of placental-derived T cells to generate "off-the-shelf" allogeneic P-CD19 CAR T cells was developed. Twenty-One day expanded, non-modified P-T cells (N=3) were compared to adult PBMCs for their allo-reactivity in a Xenogeneic GvHD model in NCG mice. P-T cells did not induce xeno-GvHD whereas PBMCs did, as evidenced by significant weight loss and death of all mice (N=5) by Day 28 post infusion. Despite expanded P-T cells demonstrating lack of in vivo GvHD, current manufacture of P-CD19 CAR T cells does include a CRISPR-mediated T-cell receptor a constant (TRAC) knockout (KO) step as an additional risk-mitigation strategy to circumvent any potential GvHD stemming from expression of endogenous T cell receptor. CD19 CAR transduction using a retrovirus provided by Sorrento Therapeutics, Inc., followed by TRAC knockout with CRISPR results in both high efficiency of CD19 CAR expression (~30% CD19 Fc+) and TCR KO (>96% CD3-/ TCR a/b-). In vitro, the functional activity of P-CD19 CAR-TRAC KO T cells against CD19+ Burkitt's Lymphoma (Daudi) and Acute lymphoblastic Leukemia (NALM6) cell lines was assessed in cytotoxicity and cytokine release assays. P-CD19 CAR T cells specifically lyse CD19+ Daudi/ Nalm6 targets in both 4-hour endpoint FACS and ACEA kinetic cytotoxicity assays, and in most cases at levels equivalent to or greater than PBMC-derived CD19 CAR T cells. When P-CD19 CAR T cells were co-cultured with CD19+ Daudi/ Nalm6 target cells for 24-hours, they secreted pro-inflammatory cytokines and effector proteins in an antigen-specific manner. In vivo, the anti-tumor activity of P-CD19 CAR T cells was assessed using a disseminated lymphoma xenograft model in NSG mice. Luciferase expressing Daudi cells (3×106) were intravenously (IV) injected on Day 0, followed by IV injection of P-CD19 CAR T cells (14×106) on Day 7. Bioluminescence Imaging (BLI) and survival were used as primary study endpoints. P- CD19 CAR T cells were well tolerated and safe. P-CD19 CAR T cells significantly reduced tumor burden, and improved survival. Four weeks after treatment, the vehicle group had a 100% mortality rate, while all animals from P-CD19 CAR T-treated group (N=5) remained alive without clinical symptoms including weight loss or changes in their fur. In summary, Celularity has defined a robust process for the generation and expansion of CD19 CAR T cells from human placenta. These cells exhibit potent anti-tumor activity both in vitro and in vivo with little evidence of acute GvHD induction, highlighting their potential as an allogeneic, adoptive cell therapeutic agent. Future in vivo GvHD studies will include assessment of both CD19 CAR and TRAC KO genetically modified P-T cells. Disclosures Karasiewicz: Celgene: Equity Ownership; Celularity, Inc.: Employment, Equity Ownership, Patents & Royalties: Patent Inventor. He:Celularity Inc: Employment. Ng:Celularity, Inc.: Employment. Tess:Celularity, Inc.: Employment. Ling:Celularity Inc: Employment. Kaufmann:Sorrento Therapeutics, Inc.: Employment, Equity Ownership, Patents & Royalties. Zeldis:Sorrento Therapeutics Inc: Employment, Equity Ownership. Ji:Celularity, Inc.: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Sorrento Therapeutics Inc: Employment, Equity Ownership, Patents & Royalties. Hariri:Celularity Inc: Employment. Zhang:Celularity Inc: Employment.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1934-1934 ◽  
Author(s):  
Eduardo Huarte ◽  
Roddy S O'Connor ◽  
Melissa Parker ◽  
Taisheng Huang ◽  
Michael C. Milone ◽  
...  

Background: T-cells engineered to express a chimeric antigen receptor (CAR-T-cells) are a promising cancer immunotherapy. Such targeted therapies have shown long-term relapse survival in patients with B cell leukemia and lymphoma. However, cytokine release syndrome (CRS) represents a serious, potentially life-threatening, side effect often associated with CAR-T cells therapy. The Janus kinase (JAK) tyrosine kinase family is pivotal for the downstream signaling of inflammatory cytokines, including interleukins (ILs), interferons (IFNs), and multiple growth factors. CRS manifests as a rapid (hyper)immune reaction driven by excessive inflammatory cytokine release, including IFN-g and IL-6. Itacitinib is a potent, selective JAK1 inhibitor which is being clinically evaluated in several inflammatory diseases. Aims: To evaluate in vitro and in vivo the potential of itacitinib to modulate CRS without impairing CAR-T cell anti-tumor activity. Materials and Methods: In vitro proliferation and cytotoxic activity of T cells and CAR-T cells was measured in the presence of increasing concentrations of itacitinib or tocilizumab (anti-IL-6R). To evaluate itacitinib effects in vivo, we conducted experiments involving adoptive transfer of human CD19-CAR-T-cells in immunodeficient animals (NSG) bearing CD19 expressing NAMALWA human lymphoma cells. The effect of itacitinib on cytokine production was studied on CD19-CAR-T-cells expanded in the presence of itacitinib or tocilizumab. Finally, to study whether itacitinib was able to reduce CRS symptoms in an in vivo setting, naïve mice were stimulated with Concanavalin-A (ConA), a potent T-cell mitogen capable of inducing broad inflammatory cytokine releases and proliferation. Results: In vitro, itacitinib at IC50 relevant concentrations did not significantly inhibit proliferation or anti-tumor killing capacity of human CAR-T-cells. Itacitinib and tocilizumab (anti-IL-6R) demonstrated a similar effect on CAR T-cell cytotoxic activity profile. In vivo, CD19-CAR-T-cells adoptively transferred into CD19+ tumor bearing immunodeficient animals were unaffected by oral itacitinib treatment. In an in vitro model, itacitinib was more effective than tocilizumab in reducing CRS-related cytokines produced by CD19-CAR-T-cells. Furthermore, in the in vivo immune hyperactivity (ConA) model, itacitinib reduced serum levels of CRS-related cytokines in a dose-dependent manner. Conclusion: Itacitinib at IC50 and clinically relevant concentrations did not adversely impair the in vitro or in vivo anti-tumor activity of CAR-T cells. Using CAR-T and T cell in vitro and in vivo systems, we demonstrate that itacitinib significantly reduces CRS-associated cytokines in a dose dependent manner. Together, the data suggest that itacitinib may have potential as a prophylactic agent for the prevention of CAR-T cell induced CRS. Disclosures Huarte: Incyte corporation: Employment, Equity Ownership. Parker:Incyte corporation: Employment, Equity Ownership. Huang:Incyte corporation: Employment, Equity Ownership. Milone:Novartis: Patents & Royalties: patents related to tisagenlecleucel (CTL019) and CART-BCMA; Novartis: Research Funding. Smith:Incyte corporation: Employment, Equity Ownership.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4712-4712
Author(s):  
Jonathan Rosen ◽  
Betsy Rezner ◽  
David Robbins ◽  
Ian Hardy ◽  
Eigen Peralta ◽  
...  

Abstract Adoptive cellular therapies using engineered chimeric antigen receptor T cells (CAR-T cells) are rapidly emerging as a highly effective treatment option for a variety of life-threatening hematological malignancies. Small molecule-mediated modulation of T cell differentiation during the in vitro CAR-T manufacturing process has great potential as a method to optimize the therapeutic potential of cellular immunotherapies. In animal models, T cells with a central or stem memory (TCM/SCM) phenotype display enhanced in vivoefficacy and persistence relative to other T cell subpopulations. We sought to identify small molecules that promote skewing towards a TCM/SCM phenotype during the CAR-T manufacturing process, with associated enhanced viability, expansion and metabolic profiles of the engineered cells. To this end, we developed a high-throughput functional screening platform with primary human T cells using a combination of high-content immunophenotyping and gene expression-based readouts to analyze cells following a high-throughput T cell culture platform that represents a scaled-down model of clinical CAR-T cell production. Multicolor flow cytometry was used to measure expansion, cell viability and the expression levels of cell surface proteins that define TCM cells (e.g., CCR7, CD62L and CD27) and markers of T cell exhaustion (e.g., PD1, LAG3, and TIM3). In parallel, a portion of each sample was evaluated using high content RNA-Seq based gene expression analysis of ~100 genes representing key biological pathways of interest. A variety of known positive and negative control compounds were incorporated into the high-throughput screens to validate the functional assays and to assess the robustness of the 384-well-based screening. The ability to simultaneously correlate small molecule-induced changes in protein and gene expression levels with impacts on cell proliferation and viability of various T cell subsets, enabled us to identify multiple classes of small molecules that favorably enhance the therapeutic properties of CAR-T cells. Consistent with results previously presented by Perkins et al. (ASH, 2015), we identified multiple PI3K inhibitors that could modify expansion of T cells while retaining a TCM/SCM phenotype. In addition, we identified small molecules, and small molecule combinations, that have not been described previously in the literature that could improve CAR-T biology. Several of the top hits from the screens have been evaluated across multiple in vitro (e.g., expansion, viability, CAR expression, serial restimulation/killing, metabolic profiling, and evaluation of exhaustion markers) and in vivo (e.g., mouse tumor models for persistence and killing) assays. Results from the initial screening hits have enabled us to further refine the optimal target profile of a pharmacologically-enhanced CAR-T cell. In addition, we are extending this screening approach to identify small molecules that enhance the trafficking and persistence of CAR-T cells for treating solid tumors. In conclusion, the approach described here identifies unique small molecule modulators that can modify CAR-T cells during in vitro expansion, such that improved profiles can be tracked and selected from screening through in vitro and in vivo functional assays. Disclosures Rosen: Fate Therapeutics: Employment, Equity Ownership. Rezner:Fate Therapeutics, Inc: Employment, Equity Ownership. Robbins:Fate Therapeutics: Employment, Equity Ownership. Hardy:Fate Therapeutics: Employment, Equity Ownership. Peralta:Fate Therapeutics: Employment, Equity Ownership. Maine:Fate Therapeutics: Employment, Equity Ownership. Sabouri:Fate Therapeutics: Employment, Equity Ownership. Reynal:Fate Therapeutics: Employment. Truong:Fate Therapeutics: Employment, Equity Ownership. Moreno:Fate Therapeutics, Inc.: Employment, Equity Ownership. Foster:Fate Therapeutics: Employment, Equity Ownership. Borchelt:Fate Therapeutics: Employment, Equity Ownership. Meza:Fate Therapeutics: Employment, Equity Ownership. Thompson:Juno Therapeutics: Employment, Equity Ownership. Fontenot:Juno Therapeutics: Employment, Equity Ownership. Larson:Juno Therapeutics: Employment, Equity Ownership. Mujacic:Juno Therapeutics: Employment, Equity Ownership. Shoemaker:Fate Therapeutics: Employment, Equity Ownership.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 591-591 ◽  
Author(s):  
Cesar Sommer ◽  
Bijan Boldajipour ◽  
Julien Valton ◽  
Roman Galetto ◽  
Trevor Bentley ◽  
...  

Abstract Autologous chimeric antigen receptor (CAR) T cells targeting B-Cell Maturation Antigen (BCMA) have demonstrated promising clinical activity, inducing durable responses in patients with relapsed/refractory multiple myeloma (MM). Development of autologous CAR T therapies is however limited by logistical challenges and the time required for manufacturing, which has to be done for each patient. In addition, manufacturing may not be feasible in some patients. An allogeneic approach that utilizes engineered cells from a healthy donor could potentially expand patient access to these therapies by providing a readily available off-the-shelf product. We have previously described the screening of a library of single chain variable fragments (scFvs) with high affinity to human BCMA and the identification of candidate BCMA CARs with potent antitumor activity. Here we sought to further characterize ALLO-715, our lead allogeneic BCMA CAR T cell product, for its specificity to human BCMA, antitumor efficacy in vitro using a long-term killing assay and in xenograft mouse models with physiologic levels of human IL-7 and IL-15, and suitability for scale-up manufacturing. Allogeneic ALLO-715 CAR T cells were generated by lentiviral transduction with a second generation CAR construct incorporating a novel scFv derived from a fully-human antibody with high affinity to BCMA (KD value ~ 5 nM, determined at 37°C) and featuring a rituximab-driven off-switch. Transduced T cells were then transfected with mRNAs encoding Transcription Activator-Like Effector Nucleases (TALEN®) designed to specifically disrupt the T cell receptor alpha chain and CD52 loci. These modifications result in a cell product with a lower risk of TCR-mediated graft-versus-host disease and resistance to the CD52 antibody alemtuzumab, a lymphodepleting agent. BCMA CAR T cells exhibited robust cell expansion, with low levels of tonic signaling that resulted in minimal differentiation (> 50% Tscm/Tcm phenotype). In in vitro assays, ALLO-715 CAR T cells displayed potent cytotoxic activity when co-cultured with the target cell lines MM.1S, Molp-8, and BCMA-REH but negligible cytotoxicity against BCMA-negative REH cells. The high proliferative potential indicated by the high frequency of memory T cells was validated in long-term killing assays, where ALLO-715 CAR T cells showed substantial expansion in the presence of MM.1S cells with no evidence of exhaustion or diminished cytolytic activity after seven days of continuous exposure to target. The potency of ALLO-715 CAR T cells was unaffected by high concentrations of soluble BCMA (>10 ug/mL), which has been shown previously to interfere with the activity of some BCMA-specific CARs. In MM xenograft mouse models, ALLO-715 CAR T cells were highly efficacious at single dose. High serum IL-15 levels have been associated with CAR T cell expansion in clinical trials. To evaluate the impact of homeostatic cytokines on CAR T cell survival and antitumor activity in our xenograft models, mice were administered adeno-associated viruses (AAV) for the expression of human IL-7 and IL-15. In the presence of physiological concentrations of these cytokines, enhanced BCMA CAR T cell expansion and anti-tumor activity were observed. To assess potential off-target interactions of ALLO-715 CAR, tissue cross-reactivity studies were carried out on standard human tissue panels using a scFv-human IgG fusion protein. Consistent with the limited expression pattern of BCMA, reactivity was seen on scattered cells in lymphoid tissues such as tonsil and abundantly on BCMA-expressing cell lines, but no appreciable staining was detected in other tissues. We examined BCMA CAR T cells manufactured following a proprietary GMP-like clinical scale process and found that cell expansion and viability, T cell phenotype and in vivo antitumor efficacy were preserved. These results demonstrate the potential of ALLO-715 as a novel allogeneic BCMA CAR T therapy for the treatment of relapsed/refractory MM and other BCMA-positive malignancies. Disclosures Sommer: Allogene Therapeutics: Employment, Equity Ownership, Patents & Royalties. Boldajipour:Pfizer Inc.: Employment, Patents & Royalties. Valton:Cellectis.Inc: Employment, Equity Ownership, Patents & Royalties. Galetto:Cellectis SA: Employment, Equity Ownership, Patents & Royalties. Bentley:Allogene Therapeutics: Employment, Equity Ownership. Sutton:Allogene Therapeutics: Employment, Equity Ownership. Ni:Allogene Therapeutics: Employment, Equity Ownership. Leonard:Allogene Therapeutics: Employment, Equity Ownership. Van Blarcom:Allogene Therapeutics: Employment, Equity Ownership. Smith:Cellectis. Inc: Employment, Patents & Royalties. Chaparro-Riggers:Pfizer Inc.: Employment, Patents & Royalties. Sasu:Allogene Therapeutics: Employment, Equity Ownership, Patents & Royalties.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1893-1893 ◽  
Author(s):  
Molly R. Perkins ◽  
Shannon Grande ◽  
Amanda Hamel ◽  
Holly M. Horton ◽  
Tracy E. Garrett ◽  
...  

Abstract Patients treated with chimeric antigen receptor (CAR) T cells targeting CD19 for B cell malignancies have experienced rapid and durable tumor regressions. Manufacture of CAR T cells is challenged by the necessity to produce a unique drug product for each patient. Each treatment requires ex vivo culture of patient T cells to facilitate CAR gene transfer and to achieve therapeutic amounts of T cells. Paradoxically, ex vivo culture with IL-2 also decreases CAR T cell activity. Some investigators have proposed isolating central memory T cells (thought to be enriched for therapeutic T cells), yet isolation techniques are cumbersome and costly to scale commercially. Culture of T cells in IL-7 and IL-15 has also been shown by several investigators to improve therapeutic activity. Here we explored the potential for culture modifications to improve the therapeutic potential of CAR T cells without adding complexity to manufacturing. We tested this hypothesis using CAR T cells specific to B cell maturation antigen (BCMA) manufactured using standard IL-2 culture with an inhibitor of PI3K added to the media, or with IL-7 and IL-15 in place of IL-2. The in vivo activity was studied in NSG mouse models of human Burkitt's lymphoma (Daudi), and multiple myeloma (RPMI-8226), both of which express BCMA. In the lymphoma model, NSG mice were injected intravenously (IV) with 2 x 106 Daudi cells and allowed to accumulate a large tumor burden before being treated with 4 x 106 CAR+ T cells on day 18 post-tumor injection. At this late time point post implantation, mice had highly disseminated Daudi tumor (our goal was to model late stage disease observed in relapsed and refractory lymphoma). In this model of advanced disease, IL-2 cultured anti-BCMA CAR T cells had no effect on tumor growth (p = 0.22) and all mice succumbed to the tumors within two weeks after treatment. Anti-BCMA CAR T cells grown in IL-7 and IL-15 also failed to control tumor growth (p = 0.23). In sharp contrast, all animals treated with anti-BCMA CAR T cells cultured with the PI3K inhibitor survived and experienced complete long-term tumor regression (p=0.003). The same anti-BCMA CAR T cells were used in a model of multiple myeloma. NSG mice were injected subcutaneously (SC) with 107 RPMI-8226 MM cells, and at 22 days post-implantation mice received a single IV administration of anti-BCMA CAR T cells (4 x 105 CAR+ T cells/mouse) cultured under various conditions. In this model, all treatment groups demonstrated tumor regression, regardless of the in vitro culture conditions. To evaluate CAR T cell durability, two weeks after initial tumor clearance, surviving animals were then re-challenged with RPMI-8226 cells on the opposite flank to model tumor relapse. We found that only animals that had been treated with anti-BCMA CAR T cells cultured with PI3K inhibition were immune to subsequent tumor challenge (p=0.005). Given the superior in vivo efficacy of anti-BCMA CAR T cells cultured with PI3K inhibition, we sought to identify phenotypic characteristics associated with the improved therapeutic activity. Anti-BCMA CAR T cells cultured with PI3K inhibition contained an increased frequency of CD62L+ CD8 T cells in the final product (p < 0.001) suggesting improved expansion of a distinct CD8 T cell subset. These data suggest that inhibition of PI3K during ex vivo expansion with IL-2 may generate a superior anti-BCMA CAR T cell product for clinical use. Furthermore, this approach could potentially be used in the manufacture of other T cell therapies. Disclosures Perkins: bluebird bio: Employment, Equity Ownership. Grande:bluebird bio: Employment, Equity Ownership. Hamel:bluebird bio: Employment, Equity Ownership. Horton:bluebird bio: Employment, Equity Ownership. Garrett:bluebird bio: Employment, Equity Ownership. Miller:bluebird bio: Employment, Equity Ownership. Latimer:bluebird bio: Employment, Equity Ownership. Horvath:bluebird bio: Employment, Equity Ownership. Kuczewski:bluebird bio: Employment, Equity Ownership. Friedman:bluebird bio: Employment, Equity Ownership. Morgan:bluebird bio: Employment, Equity Ownership.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4437-4437 ◽  
Author(s):  
Eric R. Lutz ◽  
Srikanta Jana ◽  
Lakshmi Rudraraju ◽  
Elizabeth DeOliveira ◽  
Jing Zhou ◽  
...  

Background The type of T cell used in generating chimeric antigen receptor (CAR) T cells is an important choice. Evidence suggests that T cells that are early in the effector/memory differentiation pathway with more stemness and greater potential to persist are better than more differentiated T cells with less stemness that are more readily exhausted and have less potential to persist. Marrow-infiltrating Lymphocytes (MILsTM) is a novel form of adoptive T cell therapy composed of patient-autologous, polyclonal CD4 and CD8 T cells that are activated and expanded from the bone marrow. Genetically unmodified MILsTM have demonstrated antitumor activity in patients with multiple myeloma and are being developed for several other tumor types, including non-small cell lung cancer and other solid tumors. Distinguishing features of bone marrow T cells used to produce MILsTM include their memory phenotype, inherent tumor antigen-specificity, higher CD8:CD4 ratio and ability to persist long-term when compared to peripheral blood lymphocytes (PBLs) which is the T cell source used to produce currently approved CAR-T therapies. Based on these differences, we hypothesize that MILsTM provide a more robust and better fit platform for CAR-T therapy compared to PBLs. Using a CD38-specific, 4-1BB/CD3z-signaling CAR as an initial model, we have demonstrated the feasibility of producing CAR-modified MILsTM (CAR-MILsTM) and showed that CAR-MILsTM demonstrate superior killing in vitro compared to CAR-T cells generated from patient-matched PBLs (CAR-PBLs). Herein, we build on our previous data and add a second BCMA-specific CAR model. We use the two multiple myeloma model systems to compare cytolytic potential, functionality, and expression of phenotypic markers of memory, stemness and exhaustion between patient-matched CAR-MILsTM and CAR-PBLs. Methods Matched pairs of CAR-MILsTM and CAR-PBLs were produced from the bone marrow and blood of multiple myeloma patients. Two different in vitro cytotoxicity assays, the RTCA xCelligence real-time impedance and FACS assays, were used to evaluate antigen-specific killing of target tumor cells. Functionality of CD4 and CD8 CAR-T cells, at the single-cell level, was evaluated by measuring the secretion of 32 cytokines and chemokines following in vitro antigen-specific stimulation using IsoPlexis IsoCode chips and analyzed using IsoPeak. Expression of markers of T cell memory (CD45RO & CCR7/CD62L), stemness (CD27) and exhaustion (PD1 & TIM3) on CAR-MILsTM and CAR-PBLs prior to and following antigen-specific stimulation was evaluated by flow-cytometry (FACS). Results CAR-MILsTM demonstrated superior killing of tumor target cells in vitro, regardless of the antigen specificity of the CAR, when compared to matched CAR-PBLs and this superiority persisted even upon repeated antigen encounter - a factor that may be critical in guaranteeing better anti-tumor efficacy and persistence. CAR-MILsTM demonstrated increased polyfunctionality (secretion of 2+ cytokines per cell) and an increased polyfunctional strength index (PSI) following antigen-stimulation compared to CAR-PBL in both CD4 and CD8 T cells. The enhanced PSI in CAR-MILsTM was predominately mediated by effector, stimulatory and chemoattractive proteins associated with antitumor activity including Granzyme B, IFNg, IL-8, MIP1a and MIP1b. Coincidentally, increased PSI and enhanced secretion of these same proteins was reported to be associated with improved clinical responses in patients with Non-Hodgkin lymphoma treated with CD19-specific CAR-T therapy. Expression of memory markers on CD4 and CD8 T cells were similar in CAR-MILsTM and CAR-PBLs both prior to and following antigen-stimulation. Although expression of CD27, PD1 and TIM3 were similar at baseline, CAR-MILs maintained higher levels of CD27 and lower levels of PD1 and TIM3 compared to CAR-PBLs following antigen-stimulation in both CD4 and CD8 T cells. Conclusions Collectively, our data suggest that CAR-MILsTM have several advantages over CAR-PBLs, including increased cytolytic potential, enhanced polyfunctionality, increased stemness and less exhaustion. Based on these differences and the inherent antitumor properties of MILsTM, we speculate that CAR-MILsTM would be more potent and effective than currently approved CAR-T products derived from PBLs. Disclosures Lutz: WindMIL Therapeutics: Employment, Equity Ownership. Jana:WindMIL Therapeutics: Employment, Equity Ownership. Rudraraju:WindMIL Therapeutics: Employment, Equity Ownership. DeOliveira:WindMIL Therapeutics: Employment, Equity Ownership. Zhou:Isoplexis: Employment, Equity Ownership. Mackay:Isoplexis: Employment, Equity Ownership. Borrello:Aduro: Patents & Royalties: intellectual property on allogeneic MM GVAX; BMS: Consultancy; WindMIL Therapeutics: Equity Ownership, Patents & Royalties, Research Funding; Celgene: Honoraria, Research Funding, Speakers Bureau. Noonan:WindMIL Therapeutics: Employment, Equity Ownership, Patents & Royalties; Aduro: Patents & Royalties: intellectual property on allogeneic MM GVAX.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3912-3912 ◽  
Author(s):  
Pinar Ataca Atilla ◽  
Haruko Tashiro ◽  
Mary Kathryn McKenna ◽  
Madhuwanti Srinivasan ◽  
Brian Wesley Simons ◽  
...  

Introduction: C-type lectin 1 (CLL-1, CD371) is highly expressed on the malignant cells from many patients with AML, and CAR T cells directed to this antigen can selectively target both leukemic progenitor cells (LSC) as well as AML blasts whilst sparing normal tissues. We previously showed (1) that such CAR-Ts can recognize and eliminate both AML blasts and primitive AML colony-forming cells in a low tumor-burden model. We have now modified the structure of the CLL-1 CAR and added transgenic expression of IL15 to enhance performance sufficiently for activity even against more extensive disease. Material and Methods: We assessed the phenotype and cytolytic ability of T cells transduced with 5 CLL-1 CAR constructs, varying in their spacer, transmembrane and costimulatory sequences (CD28z-CD8, CD28z-sh, CD28z-CH3, 4-1BBz-sh, 4-1BBz-CH3), and compared these with the effects of our published construct (4-1BBz-CD8)(1). We used flow cytometry to determine the effects of each construct on T cell phenotype and differentiation, and sequential (recursive) co-culture assays with tumor-cell targets to determine the durability of the anti-tumor activity. The most active constructs (CD28z-CD8 and 4-1BBz-CD8) were then evaluated in NOD.SCID IL-2Rg-/- (NSGS) mice engrafted with 1.5x10ˆ6 FFLuc-modified HL 60 AML cells, which received 2x10ˆ6 CLL-1 CAR T cells on day 3. To determine if we could further potentiate the in vivo expansion, persistence and anti-tumor activity of the CLL-1 CAR-T cells, we used a second retroviral vector to co-express transgenic IL15, measuring the effects in vitro and in vivo. Mice engrafted with 1.5x10ˆ6 tumor cells and received 2.5x10ˆ6 CLL-1 CAR T cells on week 3 in patient derived xenograft (PDX) model. We determined antitumor activity by bioluminescence imaging and weekly bleeding and measured serum cytokines by multiplex analysis (Luminex, TX). After euthanasia, we examined formalin-fixed/paraffin embedded sections. Results: Modified CLL-1 CAR constructs were expressed by 70-80% of cells irrespective of CAR sequence, but CD28z-CD8 CAR T cell expansion was significantly higher than CAR T cells with 4-1BBz endodomains (p<0.001), in part because of a higher death rate/lower viability in 4-1BBz cells (p<0.001). Consistent with these differences, both CD4 and CD8 T cell populations had more terminally differentiated cells (CCR7-CD45RA+) in CD28z versus 41BBz CAR T cells. In sequential co-culture assays against HL 60 (E:T=1:4) and THP-1 (E:T=1:4), CD28z-CD8 CAR T cells continued to expand well producing the greatest antitumor effect. In vivo models showed reduction in tumor signal in mice receiving either CD28z-CD8 CAR T or 4-1BBz-CD8 CAR T cells, but that only CD28z-CD8 CAR T cells prolonged survival (p<0.01). Nonetheless, all mice ultimately relapsed, usually with extramedullary disease, in association with limited CAR T persistence. We therefore incorporated transgenic IL15 as a "signal 3" for CD28z-CD8 CAR T cells, and determined the effects of forced IL15 expression on T cell phenotype, expansion, and antitumor activity in vitro and in vivo. In vitro, CD28z-CD8 CAR T cells with IL15 were less terminally differentiated and had superior expansion compared to CD28z-CD8 CAR T cells without IL15 (p<0.001). In both AML PDX and AML cell line animal models, CD28z-CD8 CAR T co-expressing transgenic IL15 initially (week 1) expanded better than CD28z-CD8 CAR T without IL15 (p<0.001) (Fig 1a), but produced severe acute toxicity associated with high level production of human IL15, TNF alpha and IFN gamma (Fig 1b). Histopathology showed marked inflammatory changes with tissue damage in lung and liver. This acute toxicity could be managed by 2 strategies, individually or in combination. The excessive TNF alpha secretion could be blocked with anti-TNF alpha antibody (1mg/kg/mouse) (BioLegend, CA USA) weekly, while excessive T cell expansion could be arrested by activation of an inducible caspase 9 safety switch by administration of dimerizing drug (2). Both strategies successfully prolonged tumor free survival (Fig 2,b). Conclusion: Addition of transgenic IL15 to CLL-1-CD28z-CD8 CAR augmented activity against AML in a range of cell line and PDX models, and toxicity associated with exuberant CART expansion could be prevented by cytokine blockade and/or an inducible safety switch. References: 1. Tashiro H, et al. Mol Ther. 2017 2.Straathof KC et al. Blood. 2005 Disclosures Brenner: T Scan: Membership on an entity's Board of Directors or advisory committees; Marker Therapeutics: Equity Ownership; Allovir: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Tessa Therapeutics: Equity Ownership; Memgen: Membership on an entity's Board of Directors or advisory committees; Allogene: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 338-338
Author(s):  
Kathryn Hooper ◽  
Kyle Havens ◽  
Anne-Rachel Krostag ◽  
Michael S Magee ◽  
Unja Martin ◽  
...  

Abstract Chimeric antigen receptor (CAR) T cell therapies continue to show excellent outcomes in hematological cancers. Achieving success in additional tumor indications, however, will likely require modulating inhibitory pathways that limit CAR T cell potency. We developed a megaTAL nuclease targeting the gene encoding Casitas B-lineage lymphoma proto-oncogene-b (CBLB), a ubiquitin ligase that serves as an intracellular checkpoint that negatively regulates T cell activation. The megaTAL nuclease platform has been previously shown to drive highly efficient genome editing in primary T cells. Electroporation of primary T cells with mRNA encoding the CBLB megaTAL resulted in >90% indels at the target locus and a concomitant reduction of Cbl-b protein levels. Specificity characterization studies revealed three detectable non-exonic off-target sites with near negligible indel frequencies. We next assessed the functional impact of CBLB disruption in CAR T cells engineered to target the epidermal growth factor receptor (EGFR). When co-cultured with EGFR+ target cells, CAR T cells with megaTAL-mediated CBLB gene knockout had a 2-fold increase in pro-inflammatory cytokine production compared with mock-treated CAR T cells. We developed an A549 tumor xenograft model to test the activity of CBLB megaTAL-treated CAR T cells in vivo. While mock-treated CAR T cells had a transient impact on tumor growth, we observed complete and durable tumor elimination in mice infused with the CBLB megaTAL-treated CAR T cells. Improved responses in the megaTAL treated animals were particularly pronounced at lower CAR T cell doses, suggesting that CBLB knockout enhances the potency of CAR T cells. In summary, the CBLB megaTAL is a highly efficient and specific gene editing nuclease that enhances CAR T cell anti-tumor responses in vitro and in vivo, and thus could potentially improve the efficacy of CAR T therapy. Disclosures Hooper: bluebird bio: Employment, Equity Ownership. Havens:bluebird bio: Employment, Equity Ownership. Krostag:bluebird bio: Employment, Equity Ownership. Magee:bluebird bio: Employment, Equity Ownership. Martin:bluebird bio: Employment, Equity Ownership. Gupta:bluebird bio: Employment, Equity Ownership. Smurnyy:bluebird bio: Employment, Equity Ownership. Pechilis:bluebird bio: Employment, Equity Ownership. Rode:bluebird bio: Employment, Equity Ownership. Chavkin:bluebird bio: Employment, Equity Ownership. Grande:bluebird bio: Employment, Equity Ownership. Morgan:bluebird bio: Employment, Equity Ownership. Jarjour:bluebird bio: Employment, Equity Ownership. Astrakhan:bluebird bio: Employment, Equity Ownership.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1834-1834 ◽  
Author(s):  
Ana M Metelo ◽  
Ieuan Walker ◽  
Agnieszka Jozwik ◽  
Charlotte Graham ◽  
Charlotte Attwood ◽  
...  

Introduction: Autologous anti-BCMA CAR-T cells have been successfully used in clinical trials for the treatment of relapsed refractory Multiple Myeloma (rrMM), achieving high initial response rates (>80%). However, in some patients these therapeutic responses were not sustained long-term and patients relapsed within 12-18 months1,2. Poor T cell fitness leading to early CAR-T cell exhaustion as well as BCMA negative tumour escape are thought to be factors contributing to treatment failure. In this study we describe for the first time the activity of an allogeneic anti-BCMA CAR-T cell product derived from young healthy donors (HD) against primary MM cells using patient bone marrow (BM) biopsies. In addition, we compare the performance of HD and MM patient-derived anti-BCMA CAR-T cells. Results: We have developed a clinically relevant model to test the efficacy of allogeneic anti-BCMA CAR-T cells against primary MM cells. This ex vivo platform uses bulk BM biopsies from MM patients to represent the heterogeneity seen in MM tumours in vivo, including their complex genomic background and unique immunosuppressive microenvironment. Newly diagnosed patients and rrMM patients with high risk genetics are included in the cohort. Using this model we show that allogeneic anti-BCMA CAR-T cells efficiently eliminate primary MM cells after 4 hours of co-culture, in a dose-dependent manner (n=9). These allogeneic anti-BCMA CAR-T cells specifically target BCMA-expressing primary MM cells (including samples with low BCMA levels and high risk genomic abnormalities, with specific anti-BCMA CAR-T cell killing of 13-73%), whilst not affecting non-tumour cells in the BM microenvironment. Moreover, we show that anti-BCMA CAR-T cells become significantly activated after exposure to CD138+ MM cells (>50% CD25+ T cells versus <10% CD25+ T cells against negative controls) and release a range of cytokines detected in the cell culture media by Luminex (including IFNγ, TNFα, IL8, GMCSF, IL-13, IL-12, MIP-1α, MIP-1β, RANTES, IL-5, IFN-α and IL-7). Finally, we compare the T cell profile of rrMM-derived anti-BCMA CAR-T cells (n=6) versus HD-derived anti-BCMA CAR-T cells (n=6), showing that HD-derived anti-BCMA CAR-T cells have a higher CD4/CD8 ratio (0.684 vs. 0.334, p<0.05), increased percentage of naïve CD4 T cells (13.6% vs. 5.05%, p<0.05) and naïve CD8 T cells (34.13% vs. 4.43%, p<0.05) and generate an expanded population of activated CD25+ T cells after exposure to MM cells. In contrast, MM-derived anti-BCMA CAR-T cells express increased levels of TIGIT (a checkpoint inhibitory molecule involved in MM relapse) and have a large percentage of permanently dysfunctional T cells (CD101+CD38+CD8+), which might affect their T cell fitness and persistence in vivo. Conclusion: To our knowledge, this is the first study showing that allogeneic anti-BCMA CAR-T cells are therapeutically active against primary MM cells, in a clinically relevant model that includes the BM microenvironment and different MM genomic subgroups. HD-derived anti-BCMA CAR-T cells were shown to have distinct phenotypic and functional characteristics compared to MM-derived anti-BCMA CAR-T cells. This work lends further support to the development of a first-in-human Phase 1 clinical trial for the treatment of rrMM patients using this allogeneic anti-BCMA CAR-T cell therapy. 1 Raje N et al. N Engl J Med. 2019; 380(18):1726-1737. 2 Zhao WH et al. J Hematol Oncol. 2018; 11(1):141. Disclosures Metelo: Pfizer: Research Funding; Allogene: Research Funding. Jozwik:Servier: Research Funding. Graham:Servier: Research Funding; Gillead: Other: Funding to attend educational meeting. Cuthill:Amgen: Other: Conference support; Takeda: Other: Conference support; Janssen: Speakers Bureau. Bentley:Allogene Therapeutics: Employment, Equity Ownership. Boldajipour:Pfizer: Employment. Sommer:Allogene Therapeutics, Inc.: Employment, Equity Ownership. Sasu:Allogene Therapeutics, Inc.: Employment, Equity Ownership. Benjamin:Takeda: Honoraria; Pfizer: Research Funding; Servier: Research Funding; Allogene: Research Funding; Gilead: Honoraria; Amgen: Honoraria; Eusapharm: Consultancy; Novartis: Honoraria.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A109-A109
Author(s):  
Jiangyue Liu ◽  
Xianhui Chen ◽  
Jason Karlen ◽  
Alfonso Brito ◽  
Tiffany Jheng ◽  
...  

BackgroundMesothelin (MSLN) is a glycosylphosphatidylinositol (GPI)-anchored membrane protein with high expression levels in an array of malignancies including mesothelioma, ovaria, non-small cell lung cancer, and pancreatic cancers and is an attractive target antigen for immune-based therapies. Early clinical evaluation of autologous MSLN-targeted chimeric antigen receptor (CAR)-T cell therapies for malignant pleural mesothelioma has shown promising acceptable safety1 and have recently evolved with incorporation of next-generation CAR co-stimulatory domains and armoring with intrinsic checkpoint inhibition via expression of a PD-1 dominant negative receptor (PD1DNR).2 Despite the promise that MSLN CAR-T therapies hold, manufacturing and commercial challenges using an autologous approach may prove difficult for widespread application. EBV T cells represent a unique, non-gene edited approach toward an off-the-shelf, allogeneic T cell platform. EBV-specific T cells are currently being evaluated in phase 3 trials [NCT03394365] and, to-date, have demonstrated a favorable safety profile including limited risks for GvHD and cytokine release syndrome.3 4 Clinical proof-of-principle studies for CAR transduced allogeneic EBV T cell therapies have also been associated with acceptable safety and durable response in association with CD19 targeting.5 Here we describe the first preclinical evaluation of ATA3271, a next-generation allogeneic CAR EBV T cell therapy targeting MSLN and incorporating PD1DNR, designed for the treatment of solid tumor indications.MethodsWe generated allogeneic MSLN CAR+ EBV T cells (ATA3271) using retroviral transduction of EBV T cells. ATA3271 includes a novel 1XX CAR signaling domain, previously associated with improved signaling and decreased CAR-mediated exhaustion. It is also armored with PD1DNR to provide intrinsic checkpoint blockade and is designed to retain functional persistence.ResultsIn this study, we characterized ATA3271 both in vitro and in vivo. ATA3271 show stable and proportional CAR and PD1DNR expression. Functional studies show potent antitumor activity of ATA3271 against MSLN-expressing cell lines, including PD-L1-high expressors. In an orthotopic mouse model of pleural mesothelioma, ATA3271 demonstrates potent antitumor activity and significant survival benefit (100% survival exceeding 50 days vs. 25 day median for control), without evident toxicities. ATA3271 maintains persistence and retains central memory phenotype in vivo through end-of-study. Additionally, ATA3271 retains endogenous EBV TCR function and reduced allotoxicity in the context of HLA mismatched targets. ConclusionsOverall, ATA3271 shows potent anti-tumor activity without evidence of allotoxicity, both in vitro and in vivo, suggesting that allogeneic MSLN-CAR-engineered EBV T cells are a promising approach for the treatment of MSLN-positive cancers and warrant further clinical investigation.ReferencesAdusumilli PS, Zauderer MG, Rusch VW, et al. Abstract CT036: A phase I clinical trial of malignant pleural disease treated with regionally delivered autologous mesothelin-targeted CAR T cells: Safety and efficacy. Cancer Research 2019;79:CT036-CT036.Kiesgen S, Linot C, Quach HT, et al. Abstract LB-378: Regional delivery of clinical-grade mesothelin-targeted CAR T cells with cell-intrinsic PD-1 checkpoint blockade: Translation to a phase I trial. Cancer Research 2020;80:LB-378-LB-378.Prockop S, Doubrovina E, Suser S, et al. Off-the-shelf EBV-specific T cell immunotherapy for rituximab-refractory EBV-associated lymphoma following transplantation. J Clin Invest 2020;130:733–747.Prockop S, Hiremath M, Ye W, et al. A Multicenter, Open Label, Phase 3 Study of Tabelecleucel for Solid Organ Transplant Subjects with Epstein-Barr Virus-Driven Post-Transplant Lymphoproliferative Disease (EBV+PTLD) after Failure of Rituximab or Rituximab and Chemotherapy. Blood 2019; 134: 5326–5326.Curran KJ, Sauter CS, Kernan NA, et al. Durable remission following ‘Off-the-Shelf’ chimeric antigen receptor (CAR) T-Cells in patients with relapse/refractory (R/R) B-Cell malignancies. Biology of Blood and Marrow Transplantation 2020;26:S89.


Leukemia ◽  
2021 ◽  
Author(s):  
Christos Georgiadis ◽  
Jane Rasaiyaah ◽  
Soragia Athina Gkazi ◽  
Roland Preece ◽  
Aniekan Etuk ◽  
...  

AbstractTargeting T cell malignancies using chimeric antigen receptor (CAR) T cells is hindered by ‘T v T’ fratricide against shared antigens such as CD3 and CD7. Base editing offers the possibility of seamless disruption of gene expression of problematic antigens through creation of stop codons or elimination of splice sites. We describe the generation of fratricide-resistant T cells by orderly removal of TCR/CD3 and CD7 ahead of lentiviral-mediated expression of CARs specific for CD3 or CD7. Molecular interrogation of base-edited cells confirmed elimination of chromosomal translocations detected in conventional Cas9 treated cells. Interestingly, 3CAR/7CAR co-culture resulted in ‘self-enrichment’ yielding populations 99.6% TCR−/CD3−/CD7−. 3CAR or 7CAR cells were able to exert specific cytotoxicity against leukaemia lines with defined CD3 and/or CD7 expression as well as primary T-ALL cells. Co-cultured 3CAR/7CAR cells exhibited highest cytotoxicity against CD3 + CD7 + T-ALL targets in vitro and an in vivo human:murine chimeric model. While APOBEC editors can reportedly exhibit guide-independent deamination of both DNA and RNA, we found no problematic ‘off-target’ activity or promiscuous base conversion affecting CAR antigen-specific binding regions, which may otherwise redirect T cell specificity. Combinational infusion of fratricide-resistant anti-T CAR T cells may enable enhanced molecular remission ahead of allo-HSCT for T cell malignancies.


Sign in / Sign up

Export Citation Format

Share Document