DNA-Based Methods for Measurable Residual Disease Detection in NPM1-Mutated Acute Myeloid Leukemia; Establishment of Cut-Offs for qPCR, Digital Droplet PCR and Targeted Deep Sequencing

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 6-6
Author(s):  
Louise Pettersson ◽  
Sofie Johansson Alm ◽  
Alvar Almstedt ◽  
Vladimir Lazarevic ◽  
Gustav Orrsjö ◽  
...  

For detection of measurable residual disease (MRD) in acute myeloid leukemia with NPM1 mutations, RT-qPCR with quantification of leukemic transcripts is currently considered the method of choice; however, MRD can also be determined with DNA-based methods, offering certain advantages. For example, digital droplet PCR (ddPCR) and targeted deep sequencing (deep seq) do neither require standard curves nor reference genes and are thus less labor intense than RT-qPCR. Also, deep seq allows for quantification independently of type of NPM1 mutation. In addition, DNA-based techniques enable MRD assessment of other mutations, beyond the reach of RT-qPCR, which is limited to analyses of highly expressed genes or fusion transcripts (e.g. core binding factor leukemias). With the rapid development of highly sensitive DNA-based techniques for MRD detection, there is a need to establish clinically relevant cut-offs for accurate interpretation of MRD results and risk stratification. Here, we compare and provide MRD cut-offs for three different DNA-based MRD methods for NPM1 mutations: quantitative PCR (qPCR), ddPCR and deep seq. To compare the DNA-based methods with RT-qPCR, we analyzed 110 follow-up peripheral blood (PB) or bone marrow (BM) samples from 32 AML patients harboring NPM1 mutation type A. First, we compared the mere detectability of leukemic signals (without reference to specific MRD cut-off points). We found a high correlation between results from RT-qPCR and the three DNA-based methods (Rs=0.936 for RT-qPCR vs qPCR, Rs=0.774 for RT-qPCR vs ddPCR and Rs=0.743 for RT-qPCR vs deep seq, p<0.001). As expected, RT-qPCR was the most sensitive method. Among the DNA-based methods, qPCR was the most sensitive, detecting leukemic DNA in 95% (55/58) of the RT-qPCR positive samples, compared to 72% (42/58) and 62% (36/58) for ddPCR and deep seq, respectively. Interestingly, the transcript level for a given amount of measurable leukemic DNA (RNA copy number per leukemic DNA molecule) fluctuated considerably between different follow-up samples for certain patients. In some cases, the RNA/DNA ratio exceeded a hundredfold difference between different follow-up time points in both PB and BM. Hence, transcript analysis may be more complex than just a simple measurement of leukemic cell burden, which in turn may influence accurate risk stratification and treatment decisions, if relying on RT-qPCR measurements alone. To select adequate DNA MRD cut-offs, we performed ROC curve analyses for each method at various DNA cut-offs, comparing them with the gold standard RT-qPCR cut-off. In BM, this cut-off can be defined as a less than 3 log reduction of mutated NPM1 transcripts vs diagnosis, separating MRDhigh from MRDlow/undetectable (sometimes inaccurately termed "MRD-positivity" and "MRD-negativity", respectively). In PB, the mere detectability of mutated NPM1 transcripts is considered the relevant cut-off. DNA cut-offs were chosen based on the area under the curve (AUC) for the ROC analyses (Table 1), and influenced by available literature including recommendations of prognostically relevant MRD levels. For qPCR, a cut-off at 0.1% leukemic DNA was judged relevant in BM. For ddPCR and deep seq, 0.05% was chosen to adjust for measuring allelic ratio (variant allele frequency (VAF)) rather than mutant DNA alone. In PB, the selected cut-off was detectable leukemic signal irrespective of DNA method. We next determined the accuracy of the selected cut-offs, for identification of samples with clinically relevant MRD, by comparing them with the gold standard RT-qPCR. In general, the selected DNA cut-off values generated high specificity as well as high positive and negative predictive values (Table 1). The vast majority of all MRD analyses (93% (368/395)) showed concordant results irrespective of MRD method. In BM samples, MRD assessment by the DNA based methods agreed with MRD status as determined by RT-qPCR (MRDhigh high vs MRDlow/undetectable) in 93% (62/67) of the analyses for qPCR, 96% (64/67) for ddPCR, and 97% (65/67) for deep seq. In PB, the agreement was 95% (41/43), 88% (38/43) and 86% (37/43), respectively. In summary, we found strong agreement between different MRD methods and based on this could provide clinically relevant cut-offs for risk stratification. Thus, in BM follow-up samples from AML patients with NPM1 mutation, we propose 0.1% leukemic DNA as cut-off for qPCR and 0.05% VAF for ddPCR and deep seq. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2638-2638 ◽  
Author(s):  
Amanda Winters ◽  
Jonathan A Gutman ◽  
Enkhtsetseg Purev ◽  
Brett M. Stevens ◽  
Shanshan Pei ◽  
...  

Background: Venetoclax (ven) was approved for older untreated acute myeloid leukemia (AML) patients due to high response rates and durable remissions. As a participating site in the dose escalation study, we observed deeper/more durable responses in some who received >400mg ven. We also noted 16/33 discontinued azacitidine (aza) after achieving a response; 9 relapsed and 7 remained in long term remission on ven only. Based on these observations, we designed a study that hypothesized: A)Higher initial doses of ven would allow deeper/more durable responses, and B)Multi modality high sensitivity measurable residual disease (MRD) testing could identify patients able to discontinue aza and remain on maintenance ven. Methods: This is an ongoing phase 2 study (NCT03466294) of 42 untreated AML patients ≥60 who decline/are ineligible for induction. Patients have adequate organ function and white blood cell counts <25x109/L (hydrea permitted). In cycle 1, patients receive aza 75mg/m2 on days (d) 1-7 and ven, escalated from 100 to 200 to 400 to 600mg on d 1-4. Ven continues at 600mg d 5-28 and bone marrow biopsies (BMBXs) are performed on d 8 and 28. Patients who achieve morphologic remission without count recovery have up to 14 days off therapy before subsequent cycles, with growth factor support; "upgraded" responses are recorded if count recovery occurs. Non responders discontinue or receive up to two additional cycles of aza and ven 600mg. Responders who remain MRD+ by multiparameter flow cytometry (MPFC, Hematologics) and/or digital droplet PCR (ddPCR) for as many identifiable diagnostic genes as possible also receive up to 2 additional cycles of aza and ven 600mg. MRD+ responders after 3 cycles continue aza and ven 400mg until toxicity/progression. Patients who experience MRD- responses at any time stop aza and continue ven 400mg daily (Fig 1). Results: 30 patients enrolled between May 2018 and July 2019; median age is 71 (60-88), 10% evolved from MDS and 10% and 73% had intermediate and unfavorable risk disease by ELN, respectively (Table 1). 732 adverse events (AEs) occurred; 46 (6%) were serious, the most common were neutropenic fever (37%) and pneumonia (13%). The most common >grade 2 related AEs were leukopenia (53%), thrombocytopenia (44%) and neutropenia (35%); there were no related grade 5 AEs. The overall response rate was 70% (21/30; CR=19, MLFS=2). Median number of cycles to achieve best response was 1. Significant blast reductions were seen on day 8; of the 28 with interpretable day 8 BMBXs, 10 achieved MLFS on day 8. 4 completed ≥1 cycle and were refractory. An additional 4 did not complete cycle 1: 1 died of disease and 3 elected to come off therapy (all subsequently died of disease). Four (19%) responders relapsed, after a median 180 days (27-279). With median follow up of 214 days, median response duration has not been reached. 10 patients died, after a median 65 days (29-256); 1/30 died within 30 days. Median overall survival has not been reached. Of the 26 who completed ≥1 cycle, 19 were MRD- by MPFC, including 18/19 who achieved CR. Of these 26, 3 were not monitored by ddPCR: for 2 patients this was due to the absence of detectable baseline mutations and for 1 patient it was due to refractory disease. The remaining 23 had ddPCR monitoring; 3 became MRD- by this modality (Fig 2). All 3 were also MRD- by MPFC and per protocol discontinued aza and initiated ven maintenance (Fig 1). MRD negativity by both parameters occurred after cycles 1, 2 and 3, respectively. One MRD- patient relapsed after 216 days; two remain in remission after 301 and 124 days. An additional 4 who achieved MRD+ responses discontinued aza at their insistence (and in violation of the protocol); 1 relapsed after 279 days, and 3 remain in ongoing remission. Univariate predictors of refractory disease were FAB M0/M1 (OR 0.070, p=0.02) and RAS pathway mutations (OR 14.25, p=0.02). Conclusions: Higher initial doses of ven are tolerated in this population. Blast reduction occurs quickly in many patients (day 8), for this low intensity regimen. Response rates are consistent with lower doses of ven. Very deep responses, as measured by highly sensitive MRD methods (MPFC and ddPCR are capable of sensitivity up to 0.02%), are attainable. Longer follow up time will determine if higher ven doses and MRD-driven decisions related to continuation of aza result in more durable responses. Increased maturation of blasts and RAS pathway mutations are predictors for refractory disease. Disclosures Lyle: Pfizer: Membership on an entity's Board of Directors or advisory committees; Daiichi Sankyo Incyte: Membership on an entity's Board of Directors or advisory committees; Agios: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees. Pollyea:Agios: Consultancy, Membership on an entity's Board of Directors or advisory committees; Takeda: Consultancy, Membership on an entity's Board of Directors or advisory committees; Astellas: Consultancy, Membership on an entity's Board of Directors or advisory committees; Gilead: Consultancy, Membership on an entity's Board of Directors or advisory committees; Abbvie: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Pfizer: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees; Celyad: Consultancy, Membership on an entity's Board of Directors or advisory committees; Diachii Sankyo: Consultancy, Membership on an entity's Board of Directors or advisory committees; Janssen: Consultancy, Membership on an entity's Board of Directors or advisory committees; Forty-Seven: Consultancy, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (19) ◽  
pp. 1608-1618 ◽  
Author(s):  
Frank G. Rücker ◽  
Mridul Agrawal ◽  
Andrea Corbacioglu ◽  
Daniela Weber ◽  
Silke Kapp-Schwoerer ◽  
...  

Key Points MRD assessment in t(8;21) AML allows identification of patients at high relapse risk at defined time points during treatment and follow-up. MRD− after treatment is the most favorable factor for relapse risk and survival, and serial MRD analyses define cutoffs predicting relapse.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3841-3841
Author(s):  
Erik Malmberg ◽  
Sara Ståhlman ◽  
Anna Rehammar ◽  
Tore Samuelsson ◽  
Sofie J Alm ◽  
...  

Abstract Background and aim: The importance of sensitive minimal residual disease (MRD) analysis for determination of response to treatment in acute myeloid leukemia (AML) is becoming increasingly evident. Routinely, this analysis is performed using multiparameter flow cytometry, and in select cases with fusion transcripts using reverse transcription polymerase chain reaction. The drawback with flow cytometry is that it is associated with false negativity due to immunophenotypic shifts during treatment and in pending relapse. In addition, leukemia immunophenotypes often overlap with the normal regenerating bone marrow cell populations. Therefore, other means of identifying remaining leukemic cells are warranted. Leukemic cells in AML are characterized by somatic mutations in recurrently mutated genes as well as in random genes, in most cases as single nucleotide variations (SNVs). We have previously reported that leukemia-specific mutations can be readily identified at the time of diagnosis of AML using exome sequencing of high purity sorted leukemic cells and lymphocytes. The aim here was to show that leukemia-specific mutations identified with exome sequencing at diagnosis can serve as markers for MRD, quantified with targeted deep sequencing, during follow-up. Method: Seventeen cases of AML, age 2-71 years old, were included in the study. Leukemic cells and lymphocytes were sorted using fluorescence activated cell sorting (FACS), from blood or bone marrow at diagnosis of AML. Exome sequencing of sorted cell populations was performed on the Illumina platform. Variant calling was performed with Mutect for SNVs and with Strelka and Varscan for short insertions/deletions. The data was subjected to an in-house statistical algorithm to identify variants present in all leukemic cells and thus suitable for MRD analysis. For targeted deep sequencing, the Truseq-library system was used for in-house PCR and sequencing on the Illumina Miseq platform (2x150 bp). The acquired reads were stitched using PEAR, aligned to the human reference genome and the resulting alignments were analyzed with in-house scripts with respect to specific SNVs and NPM1 insertion. Results: Exome sequencing of the paired leukemia/lymphocyte samples identified 240 leukemia-specific SNVs (14 (0-29) per case (median, range) and 22 small insertions and deletions (1 (0-5) per case). The most common type of mutation was, as expected, substitution of cytosine to thymine (CàT). The number of leukemia specific SNVs correlated with age (r=0.76, p<0.001). Mutations suitable for MRD analysis were identified in all but one of the investigated AML cases. Targeted deep sequencing of leukemic cells in serial dilutions established linearity down to a determined variant allele frequency (VAF) of 0.025% for SNVs and of 0.016% for insertion in NPM1. The level of detection (mean+3SD of normal samples) was VAF 0.025% for SNVs and VAF 0.007% for insertion in NPM1. Targeted deep sequencing was then performed on DNA prepared from follow-up bone marrow slides from a patient with AML with mutations suitable for MRD analysis according to our algorithm. Targeted deep sequencing of three SNVs (in the genes CPS1, ITGB7 and FAM193A) and NPM1 type A mutation could detect mutations at all eight time points tested. There were strong correlations between the detected mutation load of the SNVs and the NPM1 type A mutation and all four mutations were present at relapse 10 months after diagnosis. Targeted deep sequencing of SNVs was in this case more sensitive and robust than multiparameter flow cytometry, which could not detect leukemic cells (<0.1% of all cells) at two of the tested time points (5 and 8 months after diagnosis) and showed a completely switched immunophenotype of leukemic cells at relapse. Conclusions: Exome sequencing of high purity sorted leukemic cells and lymphocytes at the time of diagnosis of AML can identify leukemia-specific mutations suitable for MRD analysis. With targeted deep sequencing of leukemia-specific SNVs identified in this manner, leukemic cell burden can be estimated with high sensitivity during follow-up. The method could be used for patient-tailored MRD analysis in AML. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 760-760
Author(s):  
Monique Terwijn ◽  
Angèle Kelder ◽  
Wim L.J. van Putten ◽  
Alexander N. Snel ◽  
Vincent H.J. van der elden ◽  
...  

Abstract Abstract 760 Currently, the most important prognostic factors for acute myeloid leukemia (AML) include molecular aberrancies and karyotype of the leukemic blasts. Although these factors have showed to be of utmost importance in upfront risk stratification in current treatment schedules, the treatment outcome of patients within as such defined risk groups is still quite heterogeneous. Therefore, there is an unmet need for therapy-dependent prognostic factors which can be implemented into risk-adapted treatment strategies. Minimal residual disease (MRD) frequency is such a parameter. MRD cells are considered responsible for the outgrowth of AML after treatment, leading to a relapse in 30–40% of the patients in complete remission (CR). In this study, we are the first to report prospective multicenter data on the prognostic impact of MRD frequency in adult AML. In our retrospective study (N.Feller et al. Leukemia 2004), we explored which cut-off points for percentage of MRD cells would define MRD positive (levels above cut-off, MRD+) patients with a relatively poor prognosis, from MRD negative (levels below cut-off, MRD-) patients who showed a longer overall and relapse-free survival (OS and RFS). In search for the most optimal cut-off level which can be used for clinical purpose in risk stratification-directed therapy, we used these cut-offs to evaluate the prognostic value in the current prospective setting. Diagnosis and follow-up samples were collected of 462 patients treated uniformly according to the HOVON/SAKK42a protocol (www.hovon.nl) and MRD frequency was assessed blindly without knowledge of clinical course. MRD detection was accomplished by immunophenotyping by flow cytometry (FCM) through aberrant expression of markers on AML blasts. Together with the expression of normal immature cell markers and/or myeloid lineage markers, this offers a leukemia associated phenotype (LAP). Each LAP was individually designed for each patient in diagnosis bone marrow (BM) or peripheral blood. Subsequently, BM samples obtained during follow-up were analysed for the presence of LAP-positive cells. MRD frequency was expressed as a percentage of leukocytes. The median MRD frequencies of patients in clinical CR after first induction cycle (n=164), second induction cycle (n=182) and consolidation (n=121) were 0.040%, 0.022% and 0.020%, respectively. The cut-off levels for MRD frequency as defined retrospectively were all significant in the identification of patients with adverse (MRD+) and favourable (MRD-) OS and RFS, respectively. After the first cycle, the most significant cut-off was 0.8%, leading to 17 MRD+ patients who showed a median RFS of only 8.6 months, while 147 MRD- patients had a median RFS of >47 months (p=0.003,A). The relative risk of relapse (RR) was 2.9 (95% c.i. 1.4–6.0, p=0.004). After the second induction cycle, a cut-off level of 0.06% was most significant. Above this cut-off, 49 patients showed a median RFS of 7 months, while 133 MRD- patients showed a RFS of more than 47 months (p<0.00001, fig B). The RR was 3.2 (95% c.i. 2.0–5.0, p<0.00001). After consolidation therapy, 11 MRD+ patients with extremely poor prognosis were identified (median RFS 7.3 months vs. >47 months for 110 MRD- patients, p<0.00001, fig C), with a RR of 10.6 (95% c.i. 4.9–22.8, p<0.00001). Multivariate analysis was performed with conventional prognostic factors for AML: cytogenetic risk groups and time to achieve CR. After every cycle of therapy, MRD frequency was an independent prognostic factor for RFS after all cycles (1st cycle: p=0.010, 2nd cycle and consolidation p<0.00001) and for OS after 1st (p=0.023) and 2nd induction cycle (p=0.010). In this prospective multicenter study, already after first induction cycle, MRD detection by FCM was an independent significant factor in the identification of poor prognostic patients. In future treatment studies, risk stratification, e.g. for allogeneic stem cell transplantation, should not only be based on risk estimation determined at diagnosis, but also on MRD frequency as a therapy-dependent prognostic factor. This work was supported by Netherlands Cancer Foundation KWF. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1421-1421
Author(s):  
Ya-Lan Zhou ◽  
Li-Xin Wu ◽  
Robert Peter Gale ◽  
Zi-Long Wang ◽  
Jin-Lan Li ◽  
...  

Introduction-About 25% of persons with new-diagnosed acute myeloid leukemia (AML) have normal cytogenetics and no NPM1 or FLT3-ITD mutation. The prognosis and best therapy of these persons is controversial. Methods-We evaluated 809 consecutive newly diagnosed adult with normal cytogenetics and 231 of whom had no NPM1 or FLT3-ITD mutation identified by targeted regional sequencing. 158 achieved a complete remission within 2 cycles of induction therapy and were assigned to 2 different post-remission strategies: (1) 6 courses of consolidation chemotherapy (N=95); or (2) 2-4 courses of consolidation chemotherapy and an allotransplant (N=63). Results-In multi-variable analyses a WBC ≥13·6×10E+9/L, mutated IDH2, not having a bi-allelic CEBPA mutation at diagnosis, a positive measurable residual disease (MRD)-test during consolidation and not receiving an allotransplant were independently associated with a higher cumulative incidence of relapse (CIR) and worse event-free survival (EFS). Amongst subjects with IDH2 mutations, non-bi-allelic CEBPA mutations or a positive MRD-test, subjects receiving an allotransplant had a lower 5-year CIR (16% [95% confidence interval, 6, 26%]; vs. 83% [72, 95%]; hazard ratio, HR=8·77 [4·05, 13·49]; P &lt; 0·001) and better 5-year EFS (74% [60, 88%] vs. 15% [5, 25%]; HR=0·16 [0·09, 0·29]; P &lt; 0·001). In contrast, in subjects with none of these adverse predictive variables there was no difference in CIR and EFS between those receiving an allotransplant and those who did not. Conclusions-Our data suggest a strategy to identify which persons with AML with normal cytogenetics and no NPM1 or FLT3-ITD mutation benefit from an allotransplant. Trial Registration: Registered in the www.clinicaltrials.gov, NCT01455272 and NCT02185261. Keywords: Acute myeloid leukemia, mutations, prognosis, targeted regional sequencing, measurable residual disease, risk stratification. *Correspondence Profs. Guo-Rui Ruan and Xiao-Jun Huang Peking University Peoples Hospital and Institute of Hematology No.11 Xi-Zhi-Men South Street, Beijing 100044, China T 86-10-88324672 F 86-10-88324672 Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 191 (1) ◽  
pp. 52-61 ◽  
Author(s):  
Alex Bataller ◽  
Guadalupe Oñate ◽  
Marina Diaz‐Beyá ◽  
Francesca Guijarro ◽  
Ana Garrido ◽  
...  

2018 ◽  
Vol 97 (10) ◽  
pp. 1757-1765 ◽  
Author(s):  
Marius Bill ◽  
Juliane Grimm ◽  
Madlen Jentzsch ◽  
Laura Kloss ◽  
Karoline Goldmann ◽  
...  

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4656-4656
Author(s):  
Veit Bücklein ◽  
Alexandra Stein ◽  
Benjamin Tast ◽  
Thomas Koehnke ◽  
Karsten Spiekermann ◽  
...  

Patients with Acute Myeloid Leukemia (AML) frequently relapse due to chemorefractory AML cells persisting after intensive chemotherapy at levels below the 5% morphological detection threshold (measurable residual disease, MRD). MRD has been established as an important prognostic factor for relapse-free and overall survival, making it highly relevant for post-remission treatment stratification. In contrast to MRD assessment by molecular techniques, multiparameter flow cytometry (MFC)-based MRD measurements are applicable in more than 95% of AML patients, while still offering a sensitivity of 10-4 to 10-5. Current MFC MRD assessment strategies measure 8-10 fluorochromes in parallel, resulting in a high-dimensional data set. However, evaluation of this data is usually performed by scatterplot-based manual, two-dimensional analysis. This leads to loss of information and significant inter-observer variability in MRD diagnostics. We therefore established a computational data analysis strategy for MFC MRD diagnostics, based on the unsupervised FlowSOM algorithm. By comparison with healthy bone marrow (HBM) data, FlowSOM analysis can identify aberrant (sub-)populations of cells, clustered in nodes (according to similarity of their antigen profile). These nodes can be denoted as "nodes of interest" (NOI) to simplify MRD analysis after clustering. Aim of the project was to establish FlowSOM analysis protocols and retrospectively evaluate their prognostic significance in a cohort of 46 patients with known outcomes. Bone marrow samples of these patients were analyzed at aplasia (day 16 after initiation of induction chemotherapy). Only patients with morphological blast clearance at aplasia were included. Healthy reference FlowSOM trees were established by merging flow data of 17 HBM. Analysis protocols were developed to report individual ("any node" approach) and cumulative ("sum node" approach) differences in NOI percentages when comparing HBM and MRD samples. We then performed FlowSOM MRD analyses in a patient subcohort of 19 AML patients. Importantly, for these analyses, we excluded patients who underwent allogeneic stem cell transplantation in first remission (non-HSCT subcohort). Median follow-up time was 8.3 (range 2-40) months for this subcohort. Receiver operating characteristic (ROC) analyses were used to determine optimal threshold values to differentiate relapse (n=5) and non-relapse (n=14) patients within the cohort. For "sum node" analysis strategies (defining MRD levels as cumulative difference of NOI percentages) a threshold of -2.44% was identified, optimized for Youden (Y) index and diagnostic odds ratio (DOR). For the "any node" strategy (defining MRD levels by the maximum difference of any NOI), a threshold of 0.04%, also optimized for the Y-index and DOR, discriminated best between relapse and non-relapse patients. Relapse-free survival (RFS) was significantly shorter for MRD-positive (MRDpos) patients identified by "sum node" analysis (median 8 months vs. not reached, p=0.016) and tended to be shorter for MRDpos patients by "any node" analysis (median 8 months vs. not reached, p=0.1). When applying the thresholds identified in the non-HSCT cohort to the full set of 46 patients (median follow-up interval 10.6 months, range 2-40), median RFS was not reached for the MRD-negative group (both for "sum node" and "any node" analysis), and was 14 ("sum node", p=0.098) and 14 months ("any node", p=0.360) for the MRDpos patients. Median overall survival for MRDpos patients by "sum node" analysis was 27 months, whereas it was not reached for MRD-negative patients. However, this difference did not reach statistical significance (p=0.335), probably due to the small sample size. Taken together, FlowSOM-based analysis strategies seem well suited to identify patients with MRD positivity after intensive induction chemotherapy. MFC MRD positivity at aplasia, defined by FlowSOM-based analysis, is associated with inferior RFS in retrospective analyses of small patient cohorts. Due to the underlying computational, unsupervised data analysis, FlowSOM-based assessment can be a means to harmonize MFC MRD evaluation. These promising results need to be verified in larger cohorts, with inclusion of post-induction assessments, and should be followed by prospective analyses to delineate the diagnostic validity of FlowSOM for AML MRD diagnostics in clinical trials. Disclosures Subklewe: Janssen: Consultancy; Morphosys: Research Funding; Celgene: Consultancy, Honoraria; Gilead: Consultancy, Honoraria, Research Funding; Miltenyi: Research Funding; Oxford Biotherapeutics: Research Funding; Pfizer: Consultancy, Honoraria; AMGEN: Consultancy, Honoraria, Research Funding; Roche: Consultancy, Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4445-4445
Author(s):  
Pengcheng Shi ◽  
Naying Liao ◽  
Ning Wu ◽  
Huan Li ◽  
Fen Huang ◽  
...  

Abstract Background: Acute myeloid leukemia (AML) with t(8;21) has considerable clinical heterogeneity. Only 50% of these patients receiving multiple cycles of high-dose cytarabine as post-remission treatments could achieve long term survival, and relapse occures in up to 40% of them. Therefore, further risk stratification is needed to guide appropriate post-remission treatment for t(8;21) AML patitents in first complete remission(CR1). Measurable residual disease (MRD) monitored by RUNX1-RUNX1T1 transcript levels after treatment is established as a powerful marker to predict relapse and guide treatment. Recent studies revealed cell-surface antigen CD19 negativity (CD19-) was a risk factor for relapse in t(8;21) AML. However, reports about the impact of CD19 expression combined with RUNX1-RUNX1T1 MRD on post-remission treatment remains absent to date. Methods: A total of 155 consecutive patients diagnosed with t(8;21) AML were enrolled in this study, including 69 patients who received chemotherapy (CMT) and 86 who received allogeneic stem cell transplantation (allo-SCT) as post remission treatment in CR1. MRD+ was defined as a &lt; 3 log reduction of RUNX1/RUNX1T1 level after the second consolidation therapy. Results: With a median follow-up of 40 months (range, 4-133 months), the 3-year OS, LFS and CIR rates were 75.57% ,70.46% and 27.50% for the entire population, respectively. The 3-year CIR was dramatically decreased in allo-SCT than in CMT group (13.47% vs 49.19%, p&lt;0.001). Allo-SCT demonstrated a significantly superior 3-year OS (85.78% vs 58.89%, p&lt; 0.001) and LFS (85.64% vs 45.84%, p&lt; 0.001) over CMT, respectively. The 3-year cumulative incidence of TRM was 9.27% and 7.04% in the CMT and allo-HSCT groups, respectively (p=0.890). KIT exon 17 mutation was a risk factor for OS in multivariate analysis, CD19 negativity was a risk factor for RFS in univariate analysis. Allo-SCT was a beneficial factor for LFS and OS in multivariate analysis when taking CMT as a reference. For CD19- patients (n=59), allo-HSCT demonstrated significantly lower CIR (17.20% vs 51.03%, p=0.006) , better OS (95.24% vs 51.55%, p &lt; 0.001) and LFS (82.8% vs 39.71%, p = 0.001) than CMT. On the other hand, CMT had a comparable CIR (26.70% vs 11.40, p=0.064 ), OS (73.19% vs 86.01%, p=0.153) and LFS (71.58% vs 87.76%, p=0.067) with allo-SCT for CD19+ patients (n=80). Notably, when combined with RUNX1-RUNX1T1 transcripts after the second consolidation, allo-SCT preserved a significantly lower CIR (6.67% vs 66.67%, p=0.002), improved OS (100% vs 33.33%, p&lt; 0.001) and LFS (93.33% vs 33.33%, p=0.001) than CMT in CD19-MRD+ group (n=22), respectively. In contranst, CMT revealed similar OS (80.0% vs 87.5%, p=0.677 ), LFS (60% vs 62.5%, p=0.663) and CIR (40.00% vs 37.50%, p=0.795 ) with allo-SCT in CD19-MRD- patients (n=13), respectively. For CD19+ patients, addition of MRD status had no impact on the outcome of allo-SCT and CMT. CMT preserved comparable OS (75% vs 84.66%, p =0.516), LFS (85.71% vs 96.30%, p =0.357 ) and CIR (12.50% vs 3.70%, p =0.367) with allo-SCT for CD19+MRD+ patients (n=36), and comparable OS (100% vs 92.31%, p =0.459), LFS (83.33% vs 85.29%, p =0.940 ) and CIR (16.67% vs 13.54%, p =0.998) with allo-SCT in CD19+MRD- patients (n=33). Conclusion: Combination of CD19 expression and RUNX1-RUNX1T1 MRD improved risk stratification and treatment guidance for t(8;21) AML in CR1. Allo-SCT might be recommended for the CD19-MRD+ patients, while CMT might be a reasnonable choice for CD19-MRD+ and CD19+ patients. Multicenter prospective studies are warranted to confirm the current results. Key words: t(8;21) AML, CD19, measurable residual disease, post-remission treatment, allo-SCT, chematherapy Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document