Characterizing Proteins That Mediate CALM-AF10 Leukemogenesis

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 14-14
Author(s):  
Rafi Kazi ◽  
Waitman K. Aumann ◽  
Pritha Bagchi ◽  
Daniel S. Wechsler

Background: Leukemia is the most common type of childhood cancer. Although the prognosis for many pediatric leukemias has improved, leukemias associated with the t(10;11) CALM-AF10 translocation remain difficult to treat. CALM-AF10 leukemias account for ~5-10% of childhood T-cell acute lymphoid leukemia (T-ALL) as well as a subset of acute myeloid leukemia (AML). CALM-AF10 leukemias exhibit increased expression of proleukemic HOXA genes, but relatively little is known about the cellular mechanisms that drive CALM-AF10 leukemogenesis. Our laboratory has demonstrated that the CALM protein contains a nuclear export signal (NES) that is critical for CALM-AF10-dependent leukemogenesis. The NES interacts with the CRM1/XPO1 nuclear export receptor, which shuttles proteins from the nucleus to the cytoplasm through the nuclear pore complex. We have shown that transcriptional activation of HOXA genes by CALM-AF10 is critically dependent on its interaction with CRM1. Importantly, CRM1 does not contain a recognized DNA binding domain, and it is not currently understood how the CALM-AF10/CRM1 complex interacts with regulatory regions of HOXAgenes. In order to identify proteins that mediate the interaction between the CALM-AF10/CRM1 complex and DNA, we took advantage of a proximity-based labeling approach using BioID2, a second-generation biotin ligase. When fused to a protein of interest and in the presence of biotin, BioID2 biotinylates proteins in close proximity to the ligase. These biotinylated proteins can then be identified by mass spectrometry (MS). Methods: We prepared an expression plasmid in which BioID2 was cloned in-frame with CALM-AF10. We then transiently transfected Human Embryonic Kidney 293 (HEK293) cells with the BioID2-CALM-AF10 plasmid, grew them in the presence or absence of biotin, and performed streptavidin-pulldown followed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) to identify candidate interacting proteins. Proteins were considered candidates if they had a peptide spectrum match (PSM) score > 10 and at least a two-fold greater PSM score versus negative control. We validated direct interactions of candidate proteins with CALM-AF10 by performing co-immunoprecipitation experiments. Results: We first confirmed that the addition of BioID2 to CALM-AF10 does not affect the transcriptional activation of HOXA genes or CALM-AF10 mediated immortalization of hematopoietic stem cells. We carried out three independent transfections/LC-MS/MS experiments, which identified 71, 95 and 61 proteins, respectively. Of the proteins identified, 11 candidates were common to all three experiments.Of particular interest, we identified Disruptor Of Telomeric silencing 1-Like (DOT1L), a protein known to interact with AF10, and Nuclear pore complex protein 214 (NUP214), a protein that has been identified in leukemogenic translocations. The nine additional candidate proteins included: EPS15, DVL2, DVL3, and DDX3X -all known to play a role in leukemogenesis. We performed initial validation of direct interactions via co-immunoprecipitation and found that Epidermal Growth Factor Receptor Substrate 15(EPS15) co-precipitates with CALM-AF10. Conclusion: We used biotin ligase-dependent proximity-based labeling to identify candidate proteins that potentially interact with the CALM-AF10 fusion protein. Our identification of DOT1L validates the approach, since DOT1L is known to interact with CALM-AF10. We have started to investigate other candidate proteins, focusing on known translocation partners in various leukemias. Our screen identified EPS15, a protein involved in receptor-mediated endocytosis of epidermal growth factor and a known translocation partner for MLL/KMT2A. KMT2A-EPS15 translocations (t(1;11)(p32;q23)) have been identified in both AML and ALL, and KMT2A-EPS15 is among the eight most common KMT2A rearrangements. We have shown that EPS15 co-immunoprecipitates with CALM-AF10, suggesting that EPS15 may also play a role in CALM-AF10 leukemogenesis. Further evaluation of this interaction is underway, and may lead to identification of novel pathways involved in CALM-AF10 leukemogenesis. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3312-3312
Author(s):  
Rafi Kazi ◽  
Waitman Kurt Aumann ◽  
Pritha Bagchi ◽  
Donald Tope ◽  
Daniel S. Wechsler

Abstract Background: Leukemia is the most common type of childhood cancer. Although the prognosis for many pediatric leukemias has improved, leukemias associated with the t(10;11) CALM-AF10 translocation remain difficult to treat. CALM-AF10 leukemias account for ~5-10% of childhood T-cell acute lymphoblastic leukemia (T-ALL)as well as a subset of acute myeloid leukemia (AML). CALM-AF10 leukemias exhibit increased expression of proleukemic HOXA genes, but relatively little is known about the cellular mechanisms that drive CALM-AF10 leukemogenesis. Our laboratory has demonstrated that the CALM protein contains a nuclear export signal (NES) that is critical for CALM-AF10-dependent leukemogenesis. The NES interacts with the CRM1/XPO1 nuclear export receptor, which shuttles proteins from the nucleus to the cytoplasm through the nuclear pore complex. We have shown that transcriptional activation of HOXA genes by CALM-AF10 is dependent on its interaction with CRM1. Importantly, CRM1 does not contain a recognized DNA binding domain, and it is not currently understood how the CALM-AF10/CRM1 complex interacts with regulatory regions of HOXA genes. To identify proteins that mediate the interaction between the CALM-AF10/CRM1 complex and DNA, we took advantage of a proximity-based labeling approach using BioID2, a second-generation biotin ligase. When fused to a protein of interest and in the presence of biotin, BioID2 biotinylates proteins in close proximity to the ligase. These biotinylated proteins can then be identified by mass spectrometry (MS). Methods: We prepared an expression plasmid in which BioID2 was cloned in-frame with CALM-AF10. Human Embryonic Kidney 293 (HEK293) cells were transiently transfected with BioID2-CALM-AF10 and grown in the presence or absence of biotin. MS was performed to identify candidate interacting proteins. We validated direct interactions of candidate proteins with CALM-AF10 using co-immunoprecipitation experiments in HEK293 cells transfected with a CALM-AF10 plasmid. We confirmed that candidate proteins are present in murine CALM-AF10 leukemia cells via Western blotting. In order to efficiently knockout (KO) candidate proteins, we have generated a human U937 cell line (which harbors a t(10;11) CALM-AF10 translocation) with a stable incorporated Cas9. To assess whether KO of EPS15, DVL2 or CTTN affects HOXA5 expression, we performed RT-qPCR in U937-Cas9 cells lines with confirmed KO. Results: We carried out three independent transfections/MS experiments, which identified 71, 95 and 61 proteins, respectively. Of the proteins identified, 12 candidates were common to all three experiments . Importantly, we identified Disruptor Of Telomeric silencing 1-Like (DOT1L), a protein known to interact with AF10, and Nuclear pore complex protein 214 (NUP214), a protein that interacts with CRM1 and that is involved in leukemogenic translocations. We chose EPS15, DVL2 and CTTN for further study, as each of these proteins plays a role in leukemogenesis. We performed initial validation of direct interactions via co-immunoprecipitation and found that all three proteins co-precipitate with CALM-AF10. Western blotting showed that all three proteins are expressed in a murine CALM-AF10 leukemia cell line. We effectively knocked out EPS15 protein expression in U937 cells, and showed that HOXA5 expression is reduced in the setting of EPS15 knockout. Conclusion: We used biotin ligase-dependent proximity-based labeling to identify candidate proteins that potentially interact with the CALM-AF10 fusion protein. Our identification of DOT1L validates the approach, since DOT1L is known to interact with CALM-AF10. We have started to investigate three candidate proteins - EPS15, DVL2 and CTTN - all of which are involved in leukemogenic transformation. We have shown that EPS15, DVL2 and CTTN are expressed in murine CALM-AF10 leukemia cells and directly interact with the CALM-AF10 fusion protein. Knockout of EPS15 in U937 cells results in decreased HOXA5 expression, suggesting the importance of EPS15 in CALM-AF10 leukemogenesis. Evaluation of the roles of these proteins in leukemogenesis may lead to identification of novel pathways involved in CALM-AF10 leukemogenesis. Disclosures No relevant conflicts of interest to declare.


1987 ◽  
Vol 104 (4) ◽  
pp. 849-853 ◽  
Author(s):  
M Schindler ◽  
LW Jiang

Fluorescence photobleaching was used to measure the effect of epidermal growth factor (EGF), insulin, and glucagon on the nuclear transport of fluorescent-labeled dextrans across the nuclear pore complex. EGF and insulin were found to stimulate transport approximately 200%, while boiling these polypeptide growth factors greatly diminished this enhancement activity. Glucagon demonstrated no enhancement effect. The nuclear transport enhancement effects were observed at EGF and insulin concentrations that elicit the various physiological responses, e.g., nanomolar range.


2010 ◽  
Vol 188 (3) ◽  
pp. 325-333 ◽  
Author(s):  
Nien-Pei Tsai ◽  
Ya-Lun Lin ◽  
Yao-Chen Tsui ◽  
Li-Na Wei

We report the first example of a coordinated dual action of epidermal growth factor (EGF) in stimulating the nuclear–cytoplasmic export and translation of a select messenger RNA (mRNA). The effect of EGF is mediated by the RNA-binding protein Grb7 (growth factor receptor–bound protein 7), which serves as an adaptor for a specific mRNA–protein export complex and a translational regulator. Using the κ–opioid receptor (OR [KOR]) as a model, we demonstrate that EGF activates nuclear SHP-2 (Src homology region 2–containing tyrosine phosphatase), which dephosphorylates Grb7 in the nucleus. Hypophosphorylated Grb7 binds to the KOR mRNA and recruits the Hu antigen R–exportin-1 (CRM1) complex to form a nuclear–cytoplasmic export complex that exports KOR mRNA. EGF also activates focal adhesion kinase in the cytoplasm to rephosphorylate Grb7, releasing KOR mRNA for active translation. In summary, this study uncovers a coordinated, dual activity of EGF in facilitating nuclear export of a specific mRNA–protein complex as well as translational activation of the exported mRNA.


Author(s):  
Florian Pennarubia ◽  
Agnès Germot ◽  
Emilie Pinault ◽  
Abderrahman Maftah ◽  
Sébastien Legardinier

Abstract Epidermal growth factor-like domains (EGF-LDs) of membrane and secreted proteins can be modified by N-glycans and/or potentially elongated O-linked monosaccharides such as O-glucose (O-Glc) found at two positions (O-Glc 1 and O-Glc2), O-fucose (O-Fuc) and O-N-acetylglucosamine (O-GlcNAc). The presence of three O-linked sugars within the same EGF-LD, such as in EGF-LD 20 of NOTCH1, has rarely been evidenced. We searched in KEGG GENES database to list mouse and human proteins with an EGF-LD sequence including one, two, three or four potential O-glycosylation consensus sites. Among the 129 murine retrieved proteins, most had predicted O-fucosylation and/or O-GlcNAcylation sites. Around 68% of EGF-LDs were subjected to only one O-linked sugar modification and near 5% to three modifications. Among these latter, we focused on the peptidase domain-containing protein associated with muscle regeneration 1 (PAMR1), having only one EGF-LD. To test the ability of this domain to be glycosylated, a correctly folded EGF-LD was produced in Escherichia coli periplasm, purified and subjected to in vitro incubations with the recombinant O-glycosyltransferases POGLUT1, POFUT1 and EOGT, adding O-Glc1, O-Fuc and O-GlcNAc, respectively. Using click chemistry and mass spectrometry, isolated PAMR1 EGF-LD was demonstrated to be modified by the three O-linked sugars. Their presence was individually confirmed on EGF-LD of full-length mouse recombinant PAMR1, with at least some molecules modified by both O-Glc1 and O-Fuc. Overall, these results are consistent with the presence of a triple O-glycosylated EGF-LD in mouse PAMR1.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2190-2190
Author(s):  
Catherine P Lavau ◽  
Jessica L Heath ◽  
William H Lee ◽  
Amanda E Conway ◽  
Daniel S Wechsler

Abstract HOXA genes are effectors of oncogenic transformation that are frequently upregulated in myeloid and T-cell acute leukemias. Chromosomal translocation-derived oncoproteins, including MLL fusions, NUP (NUP98 or NUP214) fusions or CALM-AF10, bind to HOXA genes and result in their overexpression. We have previously demonstrated that a CRM1-dependent Nuclear Export Signal (NES) within CALM is essential for CALM-AF10’s ability to upregulate HOXA genes and cause leukemia in mice. Interfering with the CRM1/CALM-AF10 interaction by either genetic or pharmacologic inhibition abolishes CALM-AF10’s ability to bind to and activate HOXA gene expression. Furthermore, we showed that CRM1 binds to HOXA loci, suggesting that CRM1 recruits CALM-AF10 to its target genes. To explore whether CRM1 is also involved in the upregulation of Hoxa genes associated with MLL- and NUP98-fusion genes, we measured Hoxa transcript levels in murine leukemia cells treated with the CRM1 inhibitor Leptomycin B (LMB). LMB is a small molecule that covalently binds to the NES binding domain of CRM1 and blocks its ability to interact with NES partner proteins. We found that treatment of MLL-AF10, MLL-ENL, NUP98-HOXA9 or NUP98-AF10 leukemia cells with LMB (1 nM, 2 hours) causes a 50% reduction of Hoxa7, Hoxa9, Hoxa10 and Hoxa11 levels, similar to what is observed in CALM-AF10 leukemia cells. This suggests that in addition to its ability to interact with CALM-AF10, CRM1 may also participate in the transcriptional activation of Hoxa genes caused by MLL- or NUP98-fusion proteins. To demonstrate the importance of the CRM1/CALM interaction in CALM-AF10-dependent oncogenesis, we studied the biological activity of an artificial CRM1-AF10 fusion protein. Using a murine bone marrow clonogenic progenitor replating assay, we found that while native CRM1 overexpression did not result in transformation, the CRM1-AF10 fusion significantly increased the self-renewal of clonogenic progenitors. This effect was even more pronounced when CRM1 was fused to the MLL partner ENL: transduction with a CRM1-ENL fusion gene caused the immortalization of clonogenic bone marrow progenitors. Both CRM1-AF10- and CRM1-ENL-transduced progenitors displayed overexpression of Hoxa genes. To investigate the leukemogenic potential of CRM1-AF10in vivo, we transplanted mice with retrovirally transduced bone marrow progenitors and found that CRM1-AF10 induces myeloid neoplasms with a low penetrance and long latency (after more than a year of observation, 5 of 15 mice developed myeloid neoplasms between 160 and 220 days). These primary CRM1-AF10 leukemias could be transplanted to secondary recipients and cause myeloid leukemias with a shorter latency. Experiments to determine the leukemogenic potential of CRM1-ENLin vivo are ongoing. In contrast to CRM1-AF10, CRM1-ENL-transduced progenitors displayed a marked proliferative advantage in all transplanted mice (assessed by the elevation in the percentage of GFP-expressing CRM1-ENL-transduced cells in the peripheral blood over time); mice transplanted 74 days ago will be followed to determine survival curves. In summary, our results demonstrate that CRM1 regulates the expression of Hoxa genes in mouse leukemia cells, and alteration of CRM1’s activity can drive murine leukemogenesis. This has implications for understanding the mechanisms of HOXA deregulation in human leukemias induced by various fusion oncoproteins. It is noteworthy that in addition to interacting directly with CALM-AF10 through the NES, CRM1 physiologically interacts with NUP98 and NUP214 to facilitate transport through the nuclear pore. Our data also suggest that the anti-tumor effects of CRM1 inhibitors (Selective Inhibitors of Nuclear Export, SINEs) currently undergoing clinical trials, could be mediated, at least in part, by their ability to block the transcriptional activation of tumor-promoting genes by CRM1. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document