scholarly journals Deep and Durable Remissions of Relapsed Multiple Myeloma on a First-in-Humans Clinical Trial of T Cells Expressing an Anti-B-Cell Maturation Antigen (BCMA) Chimeric Antigen Receptor (CAR) with a Fully-Human Heavy-Chain-Only Antigen Recognition Domain

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 50-51
Author(s):  
Lekha Mikkilineni ◽  
Elisabet E. Manasanch ◽  
Danielle Vanasse ◽  
Jennifer N. Brudno ◽  
Jennifer Mann ◽  
...  

T cells expressing chimeric antigen receptors (CAR) that target B-cell maturation antigen (BCMA) recognize and eliminate multiple myeloma (MM). BCMA is expressed by nearly all cases of MM. BCMA has a restricted expression pattern on normal cells. To reduce the risk of recipient immune responses against CAR T cells, we used a novel, fully-human, heavy-chain-only anti-BCMA binding domain designated FHVH33 instead of a traditional single-chain variable fragment (scFv). The FHVH33 binding domain lacks the light chain, artificial linker sequence, and 2 associated junctions of a scFv. We constructed a CAR designated FHVH33-CD8BBZ. FHVH33-CD8BBZ was encoded by a γ-retroviral vector and incorporated FHVH33, CD8α hinge and transmembrane domains, a 4-1BB costimulatory domain, and a CD3ζ domain. T cells expressing FHVH33-CD8BBZ are designated FHVH-BCMA-T. On this clinical trial, patients received 300 mg/m2 of cyclophosphamide and 30 mg/m2 of fludarabine on days -5 to -3 followed by infusion of FHVH-BCMA-T on day 0. Twenty-one FHVH-BCMA-T infusions have been administered on 5 dose levels (DL), 0.75x106, 1.5x106, 3x106, 6x106 and 12 x106 CAR+ T cells/kg of bodyweight. DL4 (6 x 106 CAR+ T cells/kg) was identified as the maximum feasible dose (MFD) after weighing toxicity, efficacy and manufacturing factors. Patients are now being enrolled on an expansion phase to test the MFD. One patient (Patient 11) received 2 treatments. Four patients have been enrolled who were not ultimately treated. The median age of the patients enrolled is 64 (range 41-72). Patients received a median of 6 prior lines of therapy (range 3-12). Of the 20 FHVH-BCMA-T treatments evaluable for response, 18 (90%) resulted in objective responses (OR). Twelve treatments resulted in VGPR, complete remission (CR) or stringent complete remission (sCR). Ten patients (50%) have ongoing responses that range between 0-80 weeks (6 sCR/CRs, 3 VGPRs, 1 PR). At the highest two DLs (8 patients), 7 patients (88%) have ongoing responses (median duration 20 weeks, range 0+ to 35+ weeks); progressive MM occurred in only 1 patient who had evidence of spinal cord compression on day +5 due to a rapidly expanding plasmacytoma, which required early intervention with high-dose corticosteroid and radiation therapy. Of the 8 patients evaluated for response who had high-risk cytogenetics at baseline, 7 had ORs. Responses are ongoing in 2 patients with TP53 mutations and 1 patient with t(4;14) translocation. Ten treated patients came off study due to progressive MM (9 patients) or death from other causes (1 patient, influenza). Two of 4 patients who had plasmacytomas evaluated for BCMA expression at relapse had evidence of BCMA-negative MM. Four patients had bone marrow aspirates evaluated for BCMA-expression before treatment and at the time of relapse; 3 of these patients had evidence of loss of BCMA expression at relapse. Of 21 FHVH-BCMA-T treatments administered, 20 (95%) were followed by cytokine release syndrome (CRS) with 16 (76%) cases of grade 1 or 2 CRS, 4 cases (19%) of grade 3 CRS, and no cases of grade 4 CRS. Three patients received tocilizumab. The median peak C-reactive protein after all 21 treatments was 196.9 mg/L. Of 21 total treatments, 8 (38%) were followed by neurologic toxicity; there were 5 cases of grade 1-2 neurologic toxicity (headache, dysarthria, confusion, delirium), 2 cases of grade 3 neurologic toxicity (confusion), and 1 patient with grade 4 spinal cord compression due to progressive MM. Two patients received corticosteroids to manage neurologic toxicities. A median of 3.0% (range 0-95%) of bone marrow T cells were CAR+ when assessed by flow cytometry 14 days after FHVH-BCMA-T infusion. We assessed blood CAR+ cells by quantitative PCR. The median peak level of CAR+ cells was 121 cells/µl (range 3-359 cells/µl) and the median day post-infusion of peak blood CAR+ cell levels was 12 (range 7-14). The results from this phase 1 trial demonstrate that FHVH-BCMA-T cells can induce deep and durable responses of relapsed MM with manageable toxicities. Assessment of durability of responses at the maximum feasible dose is a critical future plan. Accrual to the expansion cohort continues. Table Disclosures Manasanch: Novartis: Research Funding; Adaptive Biotechnologies: Honoraria; GSK: Honoraria; JW Pharma: Research Funding; Merck: Research Funding; Quest Diagnostics: Research Funding; Takeda: Honoraria; Sanofi: Honoraria; BMS: Honoraria; Sanofi: Research Funding. Rosenberg:Kite, A Gilead Company: Consultancy, Patents & Royalties, Research Funding. Kochenderfer:Kite, a Gilead company: Patents & Royalties, Research Funding; Celgene: Patents & Royalties, Research Funding; bluebird, bio: Patents & Royalties. OffLabel Disclosure: cyclophosphamide 300 mg/m2 fludarabine 30 mg/m2 Conditioning chemotherapy prior to CAR T-cell infusion

2018 ◽  
Vol 26 (8) ◽  
pp. 1906-1920 ◽  
Author(s):  
Julia Bluhm ◽  
Elisa Kieback ◽  
Stephen F. Marino ◽  
Felix Oden ◽  
Jörg Westermann ◽  
...  

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3230-3230 ◽  
Author(s):  
Lekha Mikkilineni ◽  
Elisabet E. Manasanch ◽  
Norris Lam ◽  
Danielle Vanasse ◽  
Jennifer N. Brudno ◽  
...  

Chimeric antigen receptor (CAR) T cells expressing B-cell maturation antigen (BCMA) can target and kill multiple myeloma (MM). BCMA was chosen as a target for MM because it is expressed by almost all cases of MM but has a restricted expression pattern on normal cells. CAR antigen-recognition domains made up of monoclonal antibody-derived, single-chain-variable fragments (scFv) are potentially immunogenic. To reduce the risk of recipient immune responses against CAR T cells, we used the sequence of a novel anti-BCMA, fully-human, heavy-chain-only binding domain designated FHVH33. The FHVH33 binding domain sequence was from TeneoBio, Inc. FHVH33 is smaller than a scFv. FHVH33 lacks the light chain, artificial linker sequence, and 2 associated junctions of a scFv, so it is predicted to be less immunogenic than a scFv, especially murine-derived scFvs. We constructed a CAR incorporating FHVH33, CD8α hinge and transmembrane domains, a 4-1BB costimulatory domain, and a CD3ζ T-cell activation domain. The CAR, FHVH33-CD8BBZ, is encoded by a γ-retroviral vector. FHVH33-CD8BBZ-expressing T cells (FHVH-BCMA-T) exhibited a full range of T-cell functions in vitro and eliminated tumors and disseminated malignancy in mice (Lam et al, Blood (ASH abstract) 2017 vol 130: 504). We are conducting the first clinical trial of FHVH-BCMA-T. Patients receive conditioning chemotherapy on days -5 to -3 with 300 mg/m2 of cyclophosphamide and 30 mg/m2 of fludarabine followed by infusion of FHVH-BCMA-T on day 0. This dose-escalation trial has 5 planned dose levels (DL). Twelve patients have received FHVH-BCMA-T on 3 DLs, 0.75x106, 1.5x106 and 3x106 CAR+ T cells/kg of bodyweight. Three patients were enrolled on the trial but not treated. The median age of patients enrolled was 63 (range 52-70); patients received a median of 6 lines of anti-myeloma therapy (range 3-10) prior to treatment with FHVH-BCMA-T. Ten patients out of 12 patients have achieved objective responses (OR). Five patients have obtained CRs or VGPRs to date. One patient achieved a partial remission (PR) 26 weeks after FHVH-BCMA-T infusion through a continued decrease in a measurable plasmacytoma. Five out of 7 patients who had myeloma with high-risk cytogenetics had an OR (Table). ORs occurred in patients with large soft-tissue plasmacytomas. Loss of BCMA expression on myeloma cells after treatment was documented in 2 patients. Two patients who developed progressive MM after CAR T-cell infusion had evidence of minimal residual disease in bone marrow 1-2 months post infusion of CAR T cells (patients 7,8). Eleven out of 12 patients had cytokine release syndrome (CRS); CRS grades ranged from 1-3 (Lee et al. Biol Blood Marrow Transplant 25 (2019) 625-638). The median peak C reactive protein (CRP) of the patients with CRS was 156.3 mg/L. Of 12 patients, 1 received the interleukin-6-receptor antagonist tocilizumab on day +6 to treat grade 3 CRS with hypotension requiring low-dose pressor therapy, grade 2 ejection fraction (EF) decrease and elevation of creatinine kinase (CK). All parameters returned to baseline by day +10. Patient 12 had a grade 3 decrease in EF which resolved by day +29. Two patients had grade 2 neurotoxicity that resolved without intervention: patient 3 had headaches, dysarthria and word-finding difficulties that resolved after 6 days while patient 6 had headaches on day +4. Patient 12 had grade 3 neurotoxicity with confusion on day +2; she was given dexamethasone with improvement in mental status the same day. After attaining a response, patient 6 died from influenza complications 6 weeks after FHVH-BCMA-T infusion. A median of 10.6% (range 1.1-46) of bone marrow T cells were CAR+ when assessed 14 days after FHVH-BCMA-T infusion. We assessed blood CAR+ cells by quantitative PCR. The median peak level of CAR+ cells was 76.5 cells/µl (range 3-347 cells/µl) and the median day post-infusion of peak blood CAR+ cell levels was 13 (range 9-14). The results from this phase 1 trial demonstrate that FHVH-BCMA-T cells can induce responses at low dose levels. Patients who had no CRS or low-grade CRS achieved objective responses. Toxicity was limited and reversible. Accrual to this trial continues. A maximum tolerated dose has not been determined yet. These results encourage further development of FHVH CAR-T. Table Disclosures Manasanch: Janssen: Honoraria; Sanofi: Honoraria; Takeda: Honoraria; Merck: Research Funding; Skyline Diagnostics: Research Funding; Sanofi: Research Funding; Quest Diagnostics: Research Funding; Celgene: Honoraria. Trinklein:Teneobio, Inc.: Employment, Equity Ownership. Buelow:Teneobio, Inc.: Employment, Equity Ownership. Kochenderfer:Kite and Celgene: Research Funding; Bluebird and CRISPR Therapeutics: Other: received royalties on licensing of his inventions. OffLabel Disclosure: Cyclophosphamide and fludarabine are used in combination for conditioning chemotherapy prior to CAR T-cell infusion


2019 ◽  
Vol 116 (19) ◽  
pp. 9543-9551 ◽  
Author(s):  
Jie Xu ◽  
Li-Juan Chen ◽  
Shuang-Shuang Yang ◽  
Yan Sun ◽  
Wen Wu ◽  
...  

Relapsed and refractory (R/R) multiple myeloma (MM) patients have very poor prognosis. Chimeric antigen receptor modified T (CAR T) cells is an emerging approach in treating hematopoietic malignancies. Here we conducted the clinical trial of a biepitope-targeting CAR T against B cell maturation antigen (BCMA) (LCAR-B38M) in 17 R/R MM cases. CAR T cells were i.v. infused after lymphodepleting chemotherapy. Two delivery methods, three infusions versus one infusion of the total CAR T dose, were tested in, respectively, 8 and 9 cases. No response differences were noted among the two delivery subgroups. Together, after CAR T cell infusion, 10 cases experienced a mild cytokine release syndrome (CRS), 6 had severe but manageable CRS, and 1 died of a very severe toxic reaction. The abundance of BCMA and cytogenetic marker del(17p) and the elevation of IL-6 were the key indicators for severe CRS. Among 17 cases, the overall response rate was 88.2%, with 13 achieving stringent complete response (sCR) and 2 reaching very good partial response (VGPR), while 1 was a nonresponder. With a median follow-up of 417 days, 8 patients remained in sCR or VGPR, whereas 6 relapsed after sCR and 1 had progressive disease (PD) after VGPR. CAR T cells were high in most cases with stable response but low in 6 out of 7 relapse/PD cases. Notably, positive anti-CAR antibody constituted a high-risk factor for relapse/PD, and patients who received prior autologous hematopoietic stem cell transplantation had more durable response. Thus, biepitopic CAR T against BCMA represents a promising therapy for R/R MM, while most adverse effects are clinically manageable.


2019 ◽  
Vol 129 (6) ◽  
pp. 2210-2221 ◽  
Author(s):  
Adam D. Cohen ◽  
Alfred L. Garfall ◽  
Edward A. Stadtmauer ◽  
J. Joseph Melenhorst ◽  
Simon F. Lacey ◽  
...  

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3861-3861
Author(s):  
Felix Korell ◽  
Olaf Penack ◽  
Michael Schmitt ◽  
Carsten Müller-Tidow ◽  
Lars Bullinger ◽  
...  

Abstract Background: Endothelial dysfunction underlies the two main complications of chimeric antigen receptor T (CAR-T) cell therapy, i.e. cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). The purpose of this retrospective analysis was to evaluate and validate the Endothelial Activation and Stress Index (EASIX)) as predictor for CRS and ICANS in patients receiving CD19-directed CAR-T cells. Methods: In this retrospective study, the training cohort recruited 107 patients treated with CAR-T cells at the University Hospital Heidelberg (n=83) and Charité University Medicine Berlin (n=24) from Oct 1, 2018, to March 31, 2021. Patients from the validation cohort (n=93) received CAR-T cells within the ZUMA-1 trial (ClinicalTrials.gov number: NCT02348216). The training cohort included 37 and 34 patients with relapsed / refractory (r/r) large B-cell lymphoma (LBCL) treated with Axi-cel and Tisa-cel, respectively, 1 patient with acute lymphoblastic leukemia (ALL) treated with Tisa-cel, 2 patients with mantle cell lymphoma (MCL) treated with KTE-X19 on an early access program; and 5 patients with LBCL, 5 patients with MCL, 5 patients with chronic lymphocytic leukemia, 4 patients with follicular lymphoma, and 14 patients with ALL treated with the 3 rd generation CAR-T HD-CAR-1. Median age was 57 (20-81) years, 72% were male. The 93 patients of the validation cohort all had r/r LBCL and received Axi-Cel. EASIX and serum levels of endothelial stress markers (angiopoietin-2, suppressor of tumorigenicity-2, soluble thrombomodulin and interleukin-8) were measured before start of lymphodepletion (EASIX-pre), and on days 0, 3, and 7 after CAR-T infusion. Primary endpoints were severe CRS and/or ICANS (grades 3-4). Results: Of the 107 patients of the training cohort, 61 patients (58%) developed CRS grades 1-4 and 24 patients (22%) developed ICANS grades 1-4. Higher grade CRS (grade ≥ 3) was seen in 6 patients (6%) with a median onset of 4 (0-14) days, while grade ≥ 3 ICANS occurred in 11 patients (11%; median onset 8 (4-17) days). EASIX values increased continuously from lymphodepletion to day 7 after CAR-T cell application (EASIX-pre 2.0 (0.5-76.6, interquartile range (IQR) 1.2/4.1); EASIX-d0 2.0 (0.3-91.5, IQR 1.2/4.2); EASIX-d3 2.4 (0.3-69.1, IQR 1.3/4.9) and EASIX-d7 2.7 (0.4-94.0, IQR 1.4/7.5)). In the validation cohort, Grade ≥ 3 CRS was observed in 10 patients (11%) and grade ≥ 3 ICANS in 28 patients (30%). Similar to the training cohort, EASIX values rose from lymphodepletion to day 3 after CAR-T cell application (EASIX-pre 1.8 (0.3-106.1, IQR 1.0/4.7); EASIX-d0 2.0 (0.3-120.4, IQR 1.1/4.1) and EASIX-d3 2.7 (0.3-57.9, IQR 1.7/6.2). In both cohorts, all EASIX values (pre, d0, d3, d7) were significantly higher in patients who developed either grade 3-4 CRS, ICANS or both (see Figure 1 for the training cohort). EASIX predicted grade 3-4 CRS and ICANS before lymphodepleting therapy (-pre), on day 0 and on day 3 in both cohorts: AUC EASIX-pre, training cohort 0.73 (0.62-0.85, p=0.002), validation cohort 0.76 (0.66-0.87, p<0.001). An optimized cut-off for EASIX-pre (1.86) identified in the training cohort associated with an odds ratio (OR) of 5.07 (1.82-14.10), p=0.002 in the validation cohort in multivariable binary logistic regression analysis including age, gender, diagnosis and disease stage. Serum endothelial stress markers did not predict the two complications when assessed before CAR-T infusion, but diagnostic markers were strongly associated with CRS and ICANS grade 3-4 on day+7. Conclusions: EASIX-pre is a validated predictor of severe complications after CAR-T therapy and may help to tailor safety monitoring measures according to the individual patient's needs. Data on patients from the ZUMA-1 trial were provided by Kite/Gilead. Figure 1 Figure 1. Disclosures Penack: Astellas: Honoraria; Gilead: Honoraria; Jazz: Honoraria; MSD: Honoraria; Novartis: Honoraria; Neovii: Honoraria; Pfizer: Honoraria; Therakos: Honoraria; Takeda: Research Funding; Incyte: Research Funding; Priothera: Consultancy; Shionogi: Consultancy; Omeros: Consultancy. Schmitt: MSD: Membership on an entity's Board of Directors or advisory committees; Apogenix: Research Funding; Hexal: Other: Travel grants, Research Funding; TolerogenixX: Current holder of individual stocks in a privately-held company; Kite Gilead: Other: Travel grants; Bluebird Bio: Other: Travel grants; Novartis: Other: Travel grants, Research Funding. Müller-Tidow: Janssen: Consultancy, Research Funding; Pfizer: Research Funding; Bioline: Research Funding. Bullinger: Pfizer: Consultancy, Honoraria; Celgene: Consultancy, Honoraria; Astellas: Honoraria; Menarini: Consultancy; Sanofi: Honoraria; Novartis: Consultancy, Honoraria; Seattle Genetics: Honoraria; Amgen: Honoraria; Bristol-Myers Squibb: Consultancy, Honoraria; Abbvie: Consultancy, Honoraria; Bayer: Research Funding; Daiichi Sankyo: Consultancy, Honoraria; Gilead: Consultancy; Hexal: Consultancy; Janssen: Consultancy, Honoraria; Jazz Pharmaceuticals: Consultancy, Honoraria, Research Funding. Dreger: Gilead Sciences: Consultancy, Speakers Bureau; AbbVie: Consultancy, Speakers Bureau; Janssen: Consultancy; Novartis: Consultancy, Speakers Bureau; BMS: Consultancy; Bluebird Bio: Consultancy; AstraZeneca: Consultancy, Speakers Bureau; Riemser: Consultancy, Research Funding, Speakers Bureau; Roche: Consultancy, Speakers Bureau.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 576-576
Author(s):  
Jay Y. Spiegel ◽  
Bita Sahaf ◽  
Nasheed Hossain ◽  
Matthew J. Frank ◽  
Gursharan Claire ◽  
...  

Abstract Background: Axicabtagene ciloleucel (axi-cel), an autologous anti-CD19 chimeric antigen receptor (CAR-T), showed significant clinical responses in patients with relapsed-refractory large-B cell lymphomas in the Zuma-1 trial (Neelapu et al, NEJM 2017). Zuma-1 analysis showed blood CAR-T cell expansion was associated with clinical response and toxicity. Herein, we report on 25 patients treated with commercial axi-cel and describe CAR-T expansion by immunophenotyping and its correlation with clinical outcomes. Methods: Twenty-five patients with aggressive lymphoma consecutively apheresed at Stanford University prior to June 30, 2018 were studied on an IRB approved biorepository-clinical outcome protocol. Cytokine release syndrome (CRS) was graded by Lee criteria (Blood 2014) and neurotoxicity according to Neelapu et. al (Nat. Rev. Clin. Onc. 2017). CAR-T cell immunophenotyping was assessed by peripheral blood flow cytometry on days 7, 14, 21 and 28 and then monthly. CAR-T cells were identified by gating on singlet+, live+, CD45+, CD14-, CD3+, anti-CD19-specific CAR mAb (clone 136.20.1; Jena et. al Plos 2013) and characterized as either CD4+ or CD8+. Results: Of 25 apheresed patients, 3 patients died prior to axi-cel infusion due to progressive lymphoma. Of 22 infused patients, 14 (64%) would have been eligible for the Zuma-1 trial. Reasons for ineligibility included symptomatic DVT (n=2), renal insufficiency (n=1), transaminitis (n=1), thrombocytopenia (n=1), MDS (n=1), pleural effusion (n=1) and 1 was ineligible by multiple criteria. Median time from initial clinic visit to infusion was 47 days (range 34-117); median time from apheresis to infusion was 22 days (range 19-38). Nine patients received bridging therapy prior to lymphodepletion chemotherapy (chemo = 4, radiation = 2, high dose dexamethasone = 3). Axi-cel infusion occurred in hospital and patients were followed expectantly for a minimum of 7 days or until adverse events resolved to <Grade 2; median hospitalization was 13.5 days (range 7-44). Ninety-five percent of patients developed CRS (Grade 2 = 73%, none ≥Grade 3). Median number of tocilizumab doses was 1 (range 0-4). Neurotoxicity occurred in 64%, Grade 3 or 4 in 27%. Corticosteroid therapy was required in 82% (77% received both tocilizumab and steroids). Median duration of steroids was 8.5 days (range 1-30); 12 patients required at least 1 week and 4 patients ≥2 weeks. Of patients infused, complete response (CR) at day 28 was 45% (ORR 86%). Of 15 patients evaluable at 3 months, ORR was 53% (CR = 7, PR = 1) and 47% progressed, similar to Zuma-1. Ineligibility for Zuma-1 was not associated with inferior outcomes. Overall, median day 7 peak in vivo axi-cel expansion using anti-CAR19 flow cytometry was 38 CAR-T/ul (Fig. 1A), matching RT-PCR measured levels reported in Zuma-1. As shown in Fig. 1A, the majority of CAR-T cells were CD8+. Patients with Grade 2 CRS had significantly higher peak expansion of CAR-T cells (both CD4+ and CD8+) as compared to those with either Grade 0 or 1 CRS (Fig. 1B). Grades 2-4 neurotoxicity were significantly associated with peak total and CD8+ CAR-T but not CD4+ (Fig. 1B). Illustratively, 2 patients with the most robust CAR-T expansion (▪, ▼ Fig. 1A) experienced Grade 4 neurotoxicity including status epilepticus requiring multiple anti-epileptics and intubation. Peak CAR-T expansion in blood did not correlate with CR or ORR at day 28; expansion did not differ between patients who did or did not require steroids. Fine needle aspirates (FNA) on a subset of patients with FDG-avid lymph nodes 2-3 days post axi-cel showed significant CAR-T expansion within the node despite low detectable circulating CAR-T. Figure 1C depicts a 76-year-old male with double expressor DLBCL who attained a CR at day 28; day 14 blood CAR-T expansion was below average (6 CAR-T/ul), while his day 2 FNA showed >35% of CD3+ T-cells expressed CAR19. As of submission, 34 patients were apheresed and updated blood and FNA results will be presented. Conclusion: Our analysis of 22 infused axi-cel patients showed an ORR of 86% and CR of 45%, despite 36% Zuma-1 ineligibilities and steroid use in 82%. Blood CAR-T expansion was associated with both CRS and neurotoxicity but not clinical response. Detection of high concentration of CAR-T cells in affected lymph nodes 2 days post infusion suggests quantification of CAR-T cells at disease sites could be predictive of clinical responses. J.Y.S and B.S are co-first authors Disclosures Latchford: Kite a Gilead Company: Speakers Bureau. Muffly:Adaptive Biotechnologies: Research Funding; Shire Pharmaceuticals: Research Funding. Miklos:Kite - Gilead: Consultancy, Research Funding; Janssen: Consultancy, Research Funding; Genentech: Research Funding; Novartis: Consultancy, Research Funding; Pharmacyclics - Abbot: Consultancy, Research Funding; Adaptive Biotechnologies: Consultancy, Research Funding.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 888-888
Author(s):  
Bijal D. Shah ◽  
Wendy Stock ◽  
William G Wierda ◽  
Olalekan Oluwole ◽  
Houston Holmes ◽  
...  

Abstract Background : Approximately 45% of new ALL cases occur in adults ≥ 20 years of age (Howlader et al. SEER Cancer Statistics. 2015), and approximately 50% of adult patients relapse with poor subsequent outcomes (Oriol et al. Haematologica. 2010; Basson et al. JCO. 2011). Promising early efficacy and manageable safety were previously reported with anti-CD19 CAR T cells (KTE-C19) in adult patients with R/R ALL (Shah et al. ASCO 2017. #3024). Here we report updated results of the ZUMA-3 trial. Methods : Adult patients (≥ 18 years of age) with R/R ALL (Philadelphia+ eligible), &gt; 5% bone marrow (BM) lymphoblasts; Eastern Cooperative Oncology Group performance status (ECOG) 0-1; and adequate renal, hepatic, and cardiac function were eligible. Patients with active graft-versus-host disease or clinically significant infection were not eligible. Patients received a target dose of 1 × 106 CAR T cells/kg or 2 × 106 CAR T cells/kg after lymphodepletion with 25 mg/m2/day fludarabine for 3 days and 900 mg/m2/day cyclophosphamide given on the last day. The primary endpoint of phase 1 was incidence of dose-limiting toxicities (DLTs). Key secondary endpoints included incidence of adverse events (AEs), incidence of minimal residual disease-negative (MRD-) responses, duration of remission (DOR), relapse-free survival (RFS), and overall survival (OS). Exploratory endpoints included levels of anti-CD19 CAR T cells in blood and levels of cytokines in serum. Results : As of the data cut-off date (DCO; April 26, 2017), 22 patients have been enrolled, and 16 patients received KTE-C19 on study. Four patients had not received treatment by the DCO, 1 patient did not receive KTE-C19 due to an AE after conditioning, and 1 patient received KTE-C19 under compassionate use. All 16 patients who received KTE-C19 prior to the DCO were included in the safety analysis, and all patients who had the opportunity to be followed for 8 weeks prior to the DCO were included in the efficacy analysis (n = 11). Of the 16 patients dosed with KTE-C19, 63% were male, 56% had ECOG 1, and 50% had received ≥ 2 previous lines of treatment, including 3 patients with prior blinatumomab. Nineteen percent of patients had undergone prior allogeneic stem cell transplant, 31% had R/R to ≥ second-line therapy, 31% had primary refractory disease, and 19% experienced first relapse within 12 months of first remission. Most patients (81%) had baseline BM blasts ≥ 60%. Six patients received the 2 × 106 cells/kg dose and 10 received the 1 × 106 cells/kg dose. No DLTs were observed. One patient experienced a grade 5 event of cytokine release syndrome (CRS) at the 2 × 106 cells/kg dose, and no other KTE-C19-related grade 5 AEs were observed. In the 16 patients who received KTE-C19, all of whom were followed for at least 4 weeks, the most common grade ≥ 3 AEs were hypotension (56%), anemia (50%), pyrexia (50%), and decreased platelet counts (44%). Grade ≥ 3 CRS and neurologic events (NE) were reported in 25% and 63% of patients, respectively. Tocilizumab (toci) or steroids were given for AE management in 94% and 75% of patients, respectively. In the 11 patients eligible for the efficacy analysis, objective response rate was 82%, including 8 (73%) patients with a complete remission (CR or CR with partial hematopoietic recovery), and 1 (9%) with blast-free BM. All remissions were MRD- as determined by flow cytometry. All 5 (100%) of the other patients who were too early for inclusion in the efficacy analysis had MRD- bone marrow with varying degrees of count recovery at the time of the DCO. Median follow-up was 6.8 months; 4 patients relapsed 63 - 168 days after treatment with KTE-C19. Efficacy was comparable between patients who recieved KTE-C19 doses of 1 × 106 and 2 × 106 CAR T cells/kg. Data from additional patients, including those treated with a lower dose of 0.5 × 106 CAR T cells/kg, as well as updated safety, efficacy, biomarker, and product characteristic analyses across dosing groups will be presented. Conclusions : In this ongoing phase 1 study, KTE-C19 has shown promising efficacy in adult patients with R/R ALL. The safety profile was generally manageable and additional approaches to improve the benefit:risk profile are being explored. ZUMA-3 continues to enroll additional patients at the 0.5 × 106 CAR T cells/kg dose level. Disclosures Wierda: AbbVie: Consultancy, Honoraria, Research Funding; Karyopharm: Research Funding; Genentech/Roche: Consultancy, Honoraria, Research Funding; Merck: Consultancy, Honoraria; Juno: Research Funding; Pharmacyclics: Consultancy, Honoraria, Research Funding; Gilead: Consultancy, Honoraria, Research Funding; Sanofi: Consultancy, Honoraria; Genzyme: Consultancy, Honoraria; Kite: Research Funding; GSK/Novartis: Consultancy, Honoraria, Research Funding; Emergent: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria; Janssen: Research Funding; The University of Texas MD Anderson Cancer Center: Employment; Acerta: Research Funding. Oluwole: Kite Pharma: Membership on an entity's Board of Directors or advisory committees. Schiller: Kite Pharma: Research Funding. Topp: Regeneron: Consultancy, Honoraria, Research Funding; Roche: Consultancy, Research Funding; Celgene: Other: Travel; Macrogenics: Consultancy, Research Funding; Amgen: Consultancy, Honoraria, Other: Travel, Research Funding. Kersten: Kite Pharma: Honoraria; Novartis: Honoraria; Roche: Honoraria, Research Funding; Celgene: Honoraria, Research Funding; Millenium/Takeda: Honoraria, Research Funding; Mundipharma: Honoraria; Gilead Sciences: Honoraria; BMS: Honoraria; MSD: Honoraria; Amgen: Honoraria. Mojadidi: Kite Pharma: Employment, Equity Ownership. Xue: Kite Pharma: Employment, Equity Ownership. Mardiros: Kite Pharma: Employment, Equity Ownership. Jiang: Kite Pharma: Employment, Equity Ownership. Shen: Kite Pharma: Employment, Equity Ownership. Aycock: Kite Pharma: Employment, Equity Ownership. Stout: Kite Pharma: Employment, Equity Ownership. Wiezorek: Kite Pharma: Employment, Equity Ownership. Jain: Kite Pharma: Employment, Equity Ownership.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 40-40
Author(s):  
Ohad Benjamini ◽  
Avichai Shimoni ◽  
Michal Besser ◽  
Noga Shem-Tov ◽  
Ivetta Danylesko ◽  
...  

Background: Richter's transformation (RT) is a rare complication of Chronic Lymphocytic Leukemia (CLL), usually into clonally related diffuse large B cell lymphoma (DLBCL). Currently there is no effective therapy to RT and CLL relapse after targeted therapy. Chimeric antigen receptor-modified T (CART) cells directed to CD19+ B-cell malignancies have promising results in relapsed DLBCL. However, its effectiveness in CLL relapse after targeted therapy and RT is less clear and no systematic reports are available. Methods: From July 2019 to May 2020 we enrolled eight CLL patients with disease transformation after chemoimmunotherapy and therapy with BTK and/or BCL2 inhibitors as part of single center phase 2 CAR T-cell therapy in B-cell malignancies (NCT02772198). Following lymphodepletion consisting of cyclophosphamide and fludarabine patients received an infusion of locally produced 1x106 CD19-CART- cells/kg, which were generated by modifying autologous T cells with retroviral vector encoding a CAR comprising FMC63 anti-CD19 ScFv linked to a CD28 costimulatory domain, and CD3-zeta intracellular signaling domain. Results: All 8 patients (pts) were relatively young with median age at CLL diagnosis of 56y (47-62). Disease transformation developed after a median of 8 years (range 1-16) from CLL diagnosis. Patients treated with CD19-CAR T-cells at median age of 64 y (54-73) having median comorbidity G-CIRS score 2 (0-5), performance status ECOG 1 (0-2) and CCT 66ml/min (26-89). Pts had history of CLL with del17p/TP53 in 83%, 5/6 available, del11q 2/6 prior to transformation. Disease transformation included RT in 6 pts with DLBCL, 1 accelerated CLL and 1 prolymphocytic transformations. Among RT pts 67% (4/6) had advanced stage DLBCL, 50% (3/6) extarnodal and 33% (2/6) bulky disease. Patients received median of 3 (0-5) CLL therapies and 2 (1-3) large cell lymphoma directed therapy. CLL therapies included chemoimunotherpay: 5 Fludarabine, cyclophosphamide, rituximab/obinutuzumab (FCR/FCO), 1 bendamustin rituximab (BR); 5 dual targeted therapy (ibrutinib and Venetoclax), 2 ibrutinib only, 1 venetoclax only. Last CLL treatment was Venetoclax in 71% (5/7) and ibrutinib in 29% (2/7) with 32 (range 15-39) months duration on ibrutinib and 10 (2-17) months on venetoclax. The reason for ibrutinib discontinuation was CLL progression (PD) in 5, disease transformation in 2, and venetocalx discontinuation due to progressive disease (PD) - 4 and transformation - 2. Post transformation all RT pts were treated with R-CHOP, second line tx 2, one patient with prolymphocytic transformation was treated with alemtuzumab, allo-SCT, ibrutinib and venetoclax. All pts had PD before treatment with CAR T-cells, 63% (5/8) had elevated LDH and 5/8 evaluable PET CT before treatment had deauville score (DS) 5 with median SUVmax 8.7 (3.7-21). After infusion of CAR T-cells 7 patients had cytokine release syndrome (CRS), 4 grade 1 and 3 grade 3-4 that required tocilizumab. Three patients had CNS toxicity, two grade 3. Seventy five percent (6/8) developed neutropenia, (3/8) grade 3-4, all neutropenia resolved except in one patient that succumbed to PD, 2 pts had infections (campylobacter and H1N1 influenza, each). There were no fatalities due to CAR T-cell toxicity. There were two fatalities due to disease progression. All 71% (5/8) responders achieved complete response with DS1 in PET CT scan on day 28. After median follow up duration of 6 (4-10) months, 2 patients proceeded to allo-SCT. Conclusion: CD19-CART-cell therapy in CLL patients with disease transformation is safe and has high complete remission rate with promising clinical response. Long term remission rate after CD19-CART-cell therapy for RT needs to be further evaluated in more patients. Disclosures Benjamini: Abbvie Inc: Consultancy, Research Funding. Tadmor:AbbVie: Consultancy, Speakers Bureau; Janssen: Consultancy, Speakers Bureau; Takeda: Consultancy, Speakers Bureau; Sanofi: Consultancy, Speakers Bureau; Medison: Consultancy, Speakers Bureau; Neopharm: Consultancy, Speakers Bureau; 6. Novartis Israel Ltd., a company wholly owned by Novartis Pharma AG: Consultancy, Speakers Bureau. Fineman:Abbvie Inc: Consultancy, Research Funding. Jacobi:Novartis: Consultancy. Avigdor:Takeda, Gilead, Pfizer: Consultancy, Honoraria; Janssen, BMS: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document